Home
Class 12
MATHS
What is the value of lim(xtoa) (sqrt(alp...

What is the value of `lim_(xtoa) (sqrt(alpha+2x)-sqrt(3x))/(sqrt3alpha+x-2sqrtx)` ?

A

`(2)/(sqrt3)`

B

`(1)/((3sqrt3))`

C

`(2)/((3sqrt3))`

D

`(1)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to \alpha} \frac{\sqrt{\alpha + 2x} - \sqrt{3x}}{\sqrt{3\alpha + x} - 2\sqrt{x}}, \] we can follow these steps: ### Step 1: Rationalize the Numerator We start by rationalizing the numerator. We multiply the numerator and denominator by the conjugate of the numerator: \[ \frac{\sqrt{\alpha + 2x} - \sqrt{3x}}{\sqrt{3\alpha + x} - 2\sqrt{x}} \cdot \frac{\sqrt{\alpha + 2x} + \sqrt{3x}}{\sqrt{\alpha + 2x} + \sqrt{3x}}. \] This gives us: \[ \frac{(\sqrt{\alpha + 2x})^2 - (\sqrt{3x})^2}{(\sqrt{3\alpha + x} - 2\sqrt{x})(\sqrt{\alpha + 2x} + \sqrt{3x})}. \] ### Step 2: Simplify the Numerator Now we simplify the numerator: \[ \alpha + 2x - 3x = \alpha - x. \] So, the expression becomes: \[ \frac{\alpha - x}{(\sqrt{3\alpha + x} - 2\sqrt{x})(\sqrt{\alpha + 2x} + \sqrt{3x})}. \] ### Step 3: Rationalize the Denominator Next, we rationalize the denominator. We multiply the denominator by its conjugate: \[ \frac{\alpha - x}{(\sqrt{3\alpha + x} - 2\sqrt{x})} \cdot \frac{\sqrt{3\alpha + x} + 2\sqrt{x}}{\sqrt{3\alpha + x} + 2\sqrt{x}}. \] This gives us: \[ \frac{\alpha - x}{(\sqrt{3\alpha + x})^2 - (2\sqrt{x})^2} \cdot \frac{\sqrt{3\alpha + x} + 2\sqrt{x}}{\sqrt{\alpha + 2x} + \sqrt{3x}}. \] ### Step 4: Simplify the Denominator Now we simplify the denominator: \[ 3\alpha + x - 4x = 3\alpha - 3x = 3(\alpha - x). \] So the expression becomes: \[ \frac{\alpha - x}{3(\alpha - x)(\sqrt{3\alpha + x} + 2\sqrt{x})} \cdot \frac{1}{\sqrt{\alpha + 2x} + \sqrt{3x}}. \] ### Step 5: Cancel Out Terms We can cancel \((\alpha - x)\) from the numerator and denominator: \[ \frac{1}{3(\sqrt{3\alpha + x} + 2\sqrt{x})(\sqrt{\alpha + 2x} + \sqrt{3x})}. \] ### Step 6: Substitute \(x = \alpha\) Now we substitute \(x = \alpha\): \[ \frac{1}{3(\sqrt{3\alpha + \alpha} + 2\sqrt{\alpha})(\sqrt{\alpha + 2\alpha} + \sqrt{3\alpha})} = \frac{1}{3(\sqrt{4\alpha} + 2\sqrt{\alpha})(\sqrt{3\alpha} + \sqrt{3\alpha})}. \] ### Step 7: Simplify Further This simplifies to: \[ \frac{1}{3(2\sqrt{\alpha} + 2\sqrt{\alpha})(2\sqrt{3\alpha})} = \frac{1}{3(4\sqrt{\alpha})(2\sqrt{3\alpha})}. \] ### Step 8: Final Calculation Calculating the final value gives: \[ \frac{1}{24\sqrt{3}\alpha}. \] ### Final Result Thus, the limit is: \[ \frac{2}{3\sqrt{3}}. \]

To find the limit \[ \lim_{x \to \alpha} \frac{\sqrt{\alpha + 2x} - \sqrt{3x}}{\sqrt{3\alpha + x} - 2\sqrt{x}}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Limits lim_(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x))]

Evaluate: lim_(x rarr a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)),(a!=0)

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

Evaluate lim_(x to a) (sqrt(4a+3x)-sqrt(x+6a))/(sqrt(2a+5x)-sqrt(3a+4x))

Evaluate lim_(xtoa) (sinx-sina)/(sqrt(x)-sqrt(a))

For x- (4sqrt6)/(sqrt2+sqrt3) , what is the value of (x+2sqrt2)/(x-2sqrt2)+(x+2sqrt3)/(x-2sqrt3) ?

lim_(x rarr3)(sqrt(x)-sqrt(3))/(sqrt(x^(2)-9))

If value of underset(x to a)lim (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrtx)" is equal to "(2sqrt3)/(m) , where m is equal to

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. Consider the following statements: 1. lim(xto0) (x^(2))/(x) exists. ...

    Text Solution

    |

  2. Let f(x)=(1)/(1-|1-x|). Then, what is lim(x to 0) f(x) equal to

    Text Solution

    |

  3. What is the value of lim(xtoa) (sqrt(alpha+2x)-sqrt(3x))/(sqrt3alpha+x...

    Text Solution

    |

  4. Assertion (A) : The function f:(1,2,3)to(a,b,c,d) defined by f={(1...

    Text Solution

    |

  5. Assertion (A) : y=2x+3 is a one to one real valued function. Reason ...

    Text Solution

    |

  6. The function f.RtoR" defined by "f(x)=(x^(2)+1)^(35) for all x""inR is

    Text Solution

    |

  7. Let f:RtoR be a function defined as f(x)=x|x|, for each x""inR,R being...

    Text Solution

    |

  8. The set of all points, where the function f(x)=x/(1+|x|) is different...

    Text Solution

    |

  9. Let y(x)=ax^(n)anddeltay dentoe samll change in y. what is limit of (d...

    Text Solution

    |

  10. What is lim(xto0) (sin^(2)ax)/(bx) (a,b are constants) equal to ?

    Text Solution

    |

  11. If f(x)={{:(3x-4",",0lexle2),(2x+lamda",",2ltxle3):} is continouous ...

    Text Solution

    |

  12. A mapping f:RtoR which is defined as f(x)=cosx,x""inR is

    Text Solution

    |

  13. What is lim(xtooo) ((x)/(3+x))^(3x) equal to?

    Text Solution

    |

  14. Consider the following function f:RtoR such that f(x)=x" if "xge0and...

    Text Solution

    |

  15. Which one of the following functions f:RtoR is injective?

    Text Solution

    |

  16. The function f(x)=e^(x),x""inR is

    Text Solution

    |

  17. What is the value of lim(xtooo) ((x+6)/(x+1))^(x+4)

    Text Solution

    |

  18. If f:RtoR,g:RtoRandg(x)=x+3and(fog)(x)=(x+3)^(2), then what is the val...

    Text Solution

    |

  19. What is the value of lim(xto1) ((x-1)^(2))/(|x-1|) ?

    Text Solution

    |

  20. A is associated with

    Text Solution

    |