Home
Class 12
MATHS
What is lim(xtooo) ((x)/(3+x))^(3x) equa...

What is `lim_(xtooo) ((x)/(3+x))^(3x)` equal to?

A

e

B

`e^(3)`

C

`e^(-9)`

D

`e^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{x}{3+x} \right)^{3x} \), we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression: \[ \frac{x}{3+x} \] As \( x \to \infty \), we can divide the numerator and denominator by \( x \): \[ \frac{x}{3+x} = \frac{x/x}{3/x + x/x} = \frac{1}{\frac{3}{x} + 1} \] As \( x \to \infty \), \( \frac{3}{x} \to 0 \), so: \[ \frac{x}{3+x} \to \frac{1}{0 + 1} = 1 \] ### Step 2: Rewrite the limit Now we rewrite the limit: \[ \lim_{x \to \infty} \left( \frac{x}{3+x} \right)^{3x} = \lim_{x \to \infty} \left( 1 - \frac{3}{x+3} \right)^{3x} \] This is because \( \frac{x}{3+x} = 1 - \frac{3}{x+3} \). ### Step 3: Use the exponential limit property We can express the limit in the form suitable for applying the exponential limit: \[ \lim_{x \to \infty} \left( 1 - \frac{3}{x+3} \right)^{3x} = \lim_{x \to \infty} \left( \left( 1 - \frac{3}{x+3} \right)^{(x+3)} \right)^{\frac{3x}{x+3}} \] As \( x \to \infty \), \( \frac{3x}{x+3} \to 3 \). ### Step 4: Evaluate the inner limit Now we focus on the inner limit: \[ \lim_{x \to \infty} \left( 1 - \frac{3}{x+3} \right)^{(x+3)} \] This limit approaches \( e^{-3} \) as \( x \to \infty \) because it is of the form \( \left( 1 + \frac{a}{n} \right)^n \) where \( a = -3 \). ### Step 5: Combine the results Thus, we have: \[ \lim_{x \to \infty} \left( 1 - \frac{3}{x+3} \right)^{(x+3)} = e^{-3} \] And since \( \frac{3x}{x+3} \to 3 \): \[ \lim_{x \to \infty} \left( 1 - \frac{3}{x+3} \right)^{3x} = \left( e^{-3} \right)^3 = e^{-9} \] ### Final Result Therefore, the limit is: \[ \lim_{x \to \infty} \left( \frac{x}{3+x} \right)^{3x} = e^{-9} \]

To solve the limit \( \lim_{x \to \infty} \left( \frac{x}{3+x} \right)^{3x} \), we will follow these steps: ### Step 1: Simplify the expression inside the limit We start with the expression: \[ \frac{x}{3+x} \] As \( x \to \infty \), we can divide the numerator and denominator by \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

(lim_(xto oo) ((x+3)/(x+1))^(x+1) is equal to

What is lim_(x to 2) (2-x)/(x^(3)-8) equal to ?

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

lim_(x rarr oo)((x-3)/(x+2))^(x) is equal to

lim_(xtooo) (1-cos^(3)4x)/(x^(2)) is equal to

lim_(xtooo)((x+1)/(x+2))^(2x+1) is

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Evaluate lim_(xtooo) (1+(2)/(x))^(x).