Home
Class 12
MATHS
What is lim(xtooo) (sqrt(a^(2)x^(2)ax+1)...

What is `lim_(xtooo) (sqrt(a^(2)x^(2)ax+1)sqrt(a^(2)x^(2)+1))` equal to?

A

`(1)/(2)`

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right) \] ### Step 2: Rationalize the expression To simplify this expression, we can multiply and divide by the conjugate: \[ L = \lim_{x \to \infty} \frac{\left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right) \left( \sqrt{a^2 x^2 + ax + 1} + \sqrt{a^2 x^2 + 1} \right)}{\sqrt{a^2 x^2 + ax + 1} + \sqrt{a^2 x^2 + 1}} \] This gives: \[ L = \lim_{x \to \infty} \frac{(a^2 x^2 + ax + 1) - (a^2 x^2 + 1)}{\sqrt{a^2 x^2 + ax + 1} + \sqrt{a^2 x^2 + 1}} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ ax + 1 - 1 = ax \] Thus, we have: \[ L = \lim_{x \to \infty} \frac{ax}{\sqrt{a^2 x^2 + ax + 1} + \sqrt{a^2 x^2 + 1}} \] ### Step 4: Factor out \(x\) from the square roots Next, we can factor \(x^2\) out of the square roots in the denominator: \[ L = \lim_{x \to \infty} \frac{ax}{\sqrt{x^2(a^2 + \frac{a}{x} + \frac{1}{x^2})} + \sqrt{x^2(a^2 + \frac{1}{x^2})}} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{ax}{x\left(\sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} + \sqrt{a^2 + \frac{1}{x^2}}\right)} \] Cancelling \(x\) gives: \[ L = \lim_{x \to \infty} \frac{a}{\sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} + \sqrt{a^2 + \frac{1}{x^2}}} \] ### Step 5: Apply the limit As \(x \to \infty\), \(\frac{a}{x} \to 0\) and \(\frac{1}{x^2} \to 0\): \[ L = \frac{a}{\sqrt{a^2 + 0 + 0} + \sqrt{a^2 + 0}} = \frac{a}{\sqrt{a^2} + \sqrt{a^2}} = \frac{a}{a + a} = \frac{a}{2a} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right) = \frac{1}{2} \] ---

To solve the limit problem \( \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2 + 1} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xtooo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)),(agt0) is

lim_(xtooo)[x-sqrt(x^(2)+x]]

the value of lim_(x rarr oo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)),(a>0) is

Evaluate the limit: lim_(x rarr oo)[sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)]

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

(2) lim_(xtooo)sqrt(x^(2)+4)/(x+3)

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. At how many points is the fucntion f(x)=[x] discontinuous?

    Text Solution

    |

  2. If f(x)=(2)/(3)x+(3)/(2),x""inR, then what is f^(-1)(x) equal to ?

    Text Solution

    |

  3. What is lim(xtooo) (sqrt(a^(2)x^(2)ax+1)sqrt(a^(2)x^(2)+1)) equal to?

    Text Solution

    |

  4. What is the value of k for which the following fucntion f(x) is contin...

    Text Solution

    |

  5. Which one of the following is correct in respect of the function f(x)=...

    Text Solution

    |

  6. Consider the following statements: I. f(x)=|x-3| is continuous at x=...

    Text Solution

    |

  7. What is lim(xto0) x^(2)sin((1)/(x)) equal to?

    Text Solution

    |

  8. What is lim(xto-2)((1+2)/(x^(3)+8))

    Text Solution

    |

  9. If f(x)f[xy]=f[x]f[y] then f[t] may be of the form:

    Text Solution

    |

  10. Which one of the following functions is differentiable for all real va...

    Text Solution

    |

  11. What is lim(xto0) (sqrt(1+x-1))/(x)

    Text Solution

    |

  12. What is lim(xto0) (2(1-cosx))/(x^(2) equal to?

    Text Solution

    |

  13. Consider the following : 1. lim(xto0) (1)/(x) exists. 2. lim(xto0)...

    Text Solution

    |

  14. Which one of the following is correct in respect of the function f(x)=...

    Text Solution

    |

  15. What is lim(xto2) (x-2)/(x^(2)-4) equal to?

    Text Solution

    |

  16. Let f:RtoR be a function whose inverse is (x+5)/(3). What is f(x) equa...

    Text Solution

    |

  17. Consider the following statements : 1. If f(x)=x^(2)andg(y)=y^(3) th...

    Text Solution

    |

  18. Let A={x""inR|xge0|. A function f:AtoA is defined by f(x)=x^(2). Which...

    Text Solution

    |

  19. Consider the following statement in respect of a function f(x): 1. f...

    Text Solution

    |

  20. Consider the function f(x)={{:(x^(2)",",xgt2),(3x-2",",xle2):}. Which ...

    Text Solution

    |