Home
Class 12
MATHS
Cosider the following statements: 1. f(x...

Cosider the following statements: 1. f(x)=[x], where [.] is the greatest integer function, is discontinuous at x=n, where `ninZ`.
2. `f(x)=cotx` is discontinuous at `x=npi,` where `ninZ`.
Which of the above statements is /are correct?

A

1 only

B

2 only

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the correctness of the given statements, we need to analyze each statement one by one. ### Statement 1: **Function:** \( f(x) = [x] \) (greatest integer function) **Analysis:** The greatest integer function, denoted as \([x]\), gives the largest integer less than or equal to \(x\). This function is known to be discontinuous at integer values. Specifically, at any integer \(n\), the function jumps from \([n-1]\) to \([n]\) as \(x\) approaches \(n\) from the left and right. - For \(x\) approaching \(n\) from the left (\(x \to n^{-}\)), \([x] = n-1\). - For \(x\) approaching \(n\) from the right (\(x \to n^{+}\)), \([x] = n\). Since the left-hand limit does not equal the right-hand limit at \(x = n\), the function is discontinuous at \(x = n\). **Conclusion for Statement 1:** The statement is correct. ### Statement 2: **Function:** \( f(x) = \cot(x) \) **Analysis:** The cotangent function, \(\cot(x)\), is defined as \(\frac{\cos(x)}{\sin(x)}\). It is discontinuous wherever \(\sin(x) = 0\), which occurs at \(x = n\pi\) for any integer \(n\). - At \(x = n\pi\), \(\sin(n\pi) = 0\), leading to \(\cot(n\pi)\) being undefined (or tending towards \(\pm \infty\)). Thus, the function \(\cot(x)\) is indeed discontinuous at \(x = n\pi\). **Conclusion for Statement 2:** The statement is correct. ### Final Conclusion: Both statements are correct. ### Summary: 1. The first statement about the greatest integer function being discontinuous at integer points is correct. 2. The second statement about the cotangent function being discontinuous at integer multiples of \(\pi\) is also correct. ### Final Answer: Both statements are correct. ---

To determine the correctness of the given statements, we need to analyze each statement one by one. ### Statement 1: **Function:** \( f(x) = [x] \) (greatest integer function) **Analysis:** The greatest integer function, denoted as \([x]\), gives the largest integer less than or equal to \(x\). This function is known to be discontinuous at integer values. Specifically, at any integer \(n\), the function jumps from \([n-1]\) to \([n]\) as \(x\) approaches \(n\) from the left and right. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=|x|+[x-1], where [ . ] is greatest integer function , then f(x) is

At which points the function f(x)=(x)/([x]) where [.] is greatest integer function, discontinuous?

The function f(x)=[x]cos((2x-1)/(2))pi where I l denotes the greatest integer function,is discontinuous

Consider the following statements: 1. The function f(x)=[x] where [.] is the greatest integer function defined on R, is continuous at all points except at x=0. 2. The function f(x)=sin|x| is continuous for all x""inR . Which of the above statements is/are correct?

Consider the following statements: I. The function f(x)=[x] . Where [.] is the greatest integer function defined on R. is continuous at all points except at x = 0. II. The function f(x)=sin|x| is continuous for all x inR . Which of the above statements is/are correct?

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. Given that lim(xtooo) ((2+x^(2))/(1+x)-Ax-B)=3 What is the value of ...

    Text Solution

    |

  2. Given that lim(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^...

    Text Solution

    |

  3. Cosider the following statements: 1. f(x)=[x], where [.] is the greate...

    Text Solution

    |

  4. If f(x)=log(e)((1+x)/(1-x)),g(x)=(3x+x^(3))/(1+3x^(2))andgof(t)=g(f(t)...

    Text Solution

    |

  5. Given a function f(x)={{:(-1,If,xle0),(ax+b,If,0ltxlt1),(1,If,xge1):...

    Text Solution

    |

  6. Given a function f(x)={{:(-1,If,xle0),(ax+b,If,0ltxlt1),(1,If,xge1):...

    Text Solution

    |

  7. Consider the following functions: 1. f(x)=x^(3),x""inRR 2. f(x)=si...

    Text Solution

    |

  8. Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(...

    Text Solution

    |

  9. Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(...

    Text Solution

    |

  10. If g(x)=(1)/(f(x))andf(x)=x,xne0, then which one of the following is c...

    Text Solution

    |

  11. If f(x)=sqet(25-x^(2)), then what is Lim(x to 1) (f(x)-f(1))/(x-1) equ...

    Text Solution

    |

  12. Consider the function f(x)={{:(ax-2,"for",-2ltxlt-1),(-1,"for",-1lex...

    Text Solution

    |

  13. The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi. ...

    Text Solution

    |

  14. Consider the following functions: 1. f(x)={{:((1)/(x),if,xne0),(0,if...

    Text Solution

    |

  15. The domain of the function f(x)=(1)/(sqrt|x|-x) is

    Text Solution

    |

  16. Consider the following statements : 1. The function f(x)=x^(2)+2cosx...

    Text Solution

    |

  17. If f:IRtoIRtoIR be two functions given by f(x)=2x-3andg(x)=x^(3)+5" th...

    Text Solution

    |

  18. If f(x)=(sin(e^(x-2)-1))/(1n(x-1)), then lim(xto2)f(x) is equal to

    Text Solution

    |

  19. Consider the following statements : Statement 1 : The function f:IRt...

    Text Solution

    |

  20. Consider the function f(x)={{:(-2sinx,if,xle-(pi)/(2)),(Asinx+B,if,-...

    Text Solution

    |