Home
Class 12
MATHS
Consider the function f(x)=(a^([x]+x)-1)...

Consider the function `f(x)=(a^([x]+x)-1)/([x]+x)` where [.] denotes the greatest integer function.
What is `lim_(xto0^(-)) (f(x)` equal to?

A

0

B

In a

C

`1-a^(-1)`

D

Limit does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \frac{a^{[\text{x}] + x} - 1}{[\text{x}] + x} \) as \( x \) approaches 0 from the left (denoted as \( \lim_{x \to 0^-} f(x) \)), we will follow these steps: ### Step 1: Understand the greatest integer function The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). As \( x \) approaches 0 from the left (i.e., \( x \to 0^- \)), \( [x] \) will be -1. Therefore, we can rewrite the function as: \[ f(x) = \frac{a^{[-1] + x} - 1}{[-1] + x} = \frac{a^{-1 + x} - 1}{-1 + x} \] ### Step 2: Substitute \( x \) with \( 0 - h \) Let \( x = 0 - h \) where \( h \) is a small positive number approaching 0. Then, we have: \[ f(0 - h) = \frac{a^{-1 + (0 - h)} - 1}{-1 + (0 - h)} = \frac{a^{-1 - h} - 1}{-1 - h} \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ f(0 - h) = \frac{a^{-1 - h} - 1}{-1 - h} \] ### Step 4: Apply the limit We need to find the limit as \( h \to 0^+ \): \[ \lim_{h \to 0^+} f(0 - h) = \lim_{h \to 0^+} \frac{a^{-1 - h} - 1}{-1 - h} \] ### Step 5: Use L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( h \to 0^+ \), we can apply L'Hôpital's Rule: 1. Differentiate the numerator: \[ \frac{d}{dh}(a^{-1 - h} - 1) = -a^{-1 - h} \ln(a) \] 2. Differentiate the denominator: \[ \frac{d}{dh}(-1 - h) = -1 \] Now applying L'Hôpital's Rule: \[ \lim_{h \to 0^+} \frac{-a^{-1 - h} \ln(a)}{-1} = \lim_{h \to 0^+} a^{-1 - h} \ln(a) \] ### Step 6: Evaluate the limit As \( h \to 0 \), \( a^{-1 - h} \) approaches \( a^{-1} \): \[ \lim_{h \to 0^+} a^{-1 - h} \ln(a) = a^{-1} \ln(a) \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0^-} f(x) = a^{-1} \ln(a) \]

To find the limit of the function \( f(x) = \frac{a^{[\text{x}] + x} - 1}{[\text{x}] + x} \) as \( x \) approaches 0 from the left (denoted as \( \lim_{x \to 0^-} f(x) \)), we will follow these steps: ### Step 1: Understand the greatest integer function The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). As \( x \) approaches 0 from the left (i.e., \( x \to 0^- \)), \( [x] \) will be -1. Therefore, we can rewrite the function as: \[ f(x) = \frac{a^{[-1] + x} - 1}{[-1] + x} = \frac{a^{-1 + x} - 1}{-1 + x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest integer function), if 1lexlt4 . Then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the numbe...

    Text Solution

    |

  2. Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the...

    Text Solution

    |

  3. Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the...

    Text Solution

    |

  4. A function f(x) is defined as follows: f(x)={{:(x+pi," for ",x""in[-...

    Text Solution

    |

  5. A function f(x) is defined as follows: f(x)={{:(x+pi," for ",x""in[-...

    Text Solution

    |

  6. Let f(x) be the greatest integer function and g(x) be the modulus func...

    Text Solution

    |

  7. Let f(x) be the greatest integer function and g(x) be the modulus func...

    Text Solution

    |

  8. If lim(xto0) phi(x)=a^(2), where ane0, then what is lim(xto0) phi((x)/...

    Text Solution

    |

  9. What is lim(xto0) e^((1)/(x^(2))) equal to?

    Text Solution

    |

  10. What is the domain of the function f(x)=(1)/(sqrt(|x|-x))?

    Text Solution

    |

  11. Consider the following in respect of the function f(x)={{:(2+x","xge...

    Text Solution

    |

  12. Let f:A->R, where A=R\ {0} is such that f(x)=(x+|x|)/x On which one o...

    Text Solution

    |

  13. f(x)={{:(3x^(2)+12x-1,-1lexle2),(37-x",",2ltxle3):} Which of the fol...

    Text Solution

    |

  14. Let f(x)={{:(-2",",-3lexle0),(x-2",",0ltxle3):}andg(x)=f(|x|)+|f(x)| ...

    Text Solution

    |

  15. Let f(x)=[x], where [.] is the greatest integer function and g(x)=sinx...

    Text Solution

    |

  16. Let f(x)=[x], where [.] is the greatest integer function and g(x)=sinx...

    Text Solution

    |

  17. Let f(x)=[x], where [.] is the greatest integer function and g(x)=sinx...

    Text Solution

    |

  18. Let f(x)={{:((e^(x)-1)/(x)",",xgt0),(0",",x=0):} be a real valued func...

    Text Solution

    |

  19. Let f(x)={{:((e^(x)-1)/(x)",",xgt0),(0",",x=0):} be a real valued func...

    Text Solution

    |

  20. Let f(x)={{:(-2",",-3lexle0),(x-2",",0ltxle3):}andg(x)=f(|x|)+|f(x)| ...

    Text Solution

    |