Home
Class 12
MATHS
What is lim(xto(pi)/(6)) (2sin^(2)x+sinx...

What is `lim_(xto(pi)/(6)) (2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)` to?

A

`-(1)/(2)`

B

`-(1)/(3)`

C

`-2`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}, \] we will follow these steps: ### Step 1: Substitute the value of \( x \) First, we substitute \( x = \frac{\pi}{6} \) into the expression. \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}. \] ### Step 2: Calculate \( \sin^2\left(\frac{\pi}{6}\right) \) Now, we calculate \( \sin^2\left(\frac{\pi}{6}\right) \): \[ \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4}. \] ### Step 3: Substitute into the numerator Now substitute \( \sin\left(\frac{\pi}{6}\right) \) and \( \sin^2\left(\frac{\pi}{6}\right) \) into the numerator: \[ 2\sin^2\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) - 1 = 2\left(\frac{1}{4}\right) + \frac{1}{2} - 1. \] Calculating this gives: \[ = \frac{1}{2} + \frac{1}{2} - 1 = 0. \] ### Step 4: Substitute into the denominator Now substitute into the denominator: \[ 2\sin^2\left(\frac{\pi}{6}\right) - 3\sin\left(\frac{\pi}{6}\right) + 1 = 2\left(\frac{1}{4}\right) - 3\left(\frac{1}{2}\right) + 1. \] Calculating this gives: \[ = \frac{1}{2} - \frac{3}{2} + 1 = 0. \] ### Step 5: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} = \lim_{x \to \frac{\pi}{6}} \frac{d}{dx}(2\sin^2 x + \sin x - 1) \bigg/ \frac{d}{dx}(2\sin^2 x - 3\sin x + 1). \] ### Step 6: Differentiate the numerator and denominator 1. Differentiate the numerator: \[ \frac{d}{dx}(2\sin^2 x + \sin x - 1) = 4\sin x \cos x + \cos x = \cos x(4\sin x + 1). \] 2. Differentiate the denominator: \[ \frac{d}{dx}(2\sin^2 x - 3\sin x + 1) = 4\sin x \cos x - 3\cos x = \cos x(4\sin x - 3). \] ### Step 7: Substitute \( x = \frac{\pi}{6} \) again Now we substitute \( x = \frac{\pi}{6} \) again: Numerator: \[ \cos\left(\frac{\pi}{6}\right)(4\sin\left(\frac{\pi}{6}\right) + 1) = \frac{\sqrt{3}}{2}(4 \cdot \frac{1}{2} + 1) = \frac{\sqrt{3}}{2}(2 + 1) = \frac{3\sqrt{3}}{2}. \] Denominator: \[ \cos\left(\frac{\pi}{6}\right)(4\sin\left(\frac{\pi}{6}\right) - 3) = \frac{\sqrt{3}}{2}(4 \cdot \frac{1}{2} - 3) = \frac{\sqrt{3}}{2}(2 - 3) = \frac{\sqrt{3}}{2}(-1) = -\frac{\sqrt{3}}{2}. \] ### Step 8: Final limit calculation Now we can compute the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{\frac{3\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2}} = -3. \] Thus, the limit is \[ \boxed{-3}. \]

To find the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(x to(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)

lim_(x to pi//6) (2sin^2x+sinx-1)/(2sin^2x-3sinx+1)=

Evaluate the following limits: lim_(xrarr pi//6)((2sin^(2)x+sinx-1))/((2sin^(2)x-3sinx+1))

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

What is lim_(xto0) (sin2x+4x)/(2x+sin4x) equal to ?

(sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

lim_(xto pi//3) (2sin(x-pi//3))/(1-2cosx) is

What is lim_(xto0) x^(2)sin((1)/(x)) equal to?

lim_ (x rarr pi / 2) ((sin x) ^ (2sin x) -1) / (sin x-1)

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. What is lim(x to 0) (tanx)/(sin2x) equal to?

    Text Solution

    |

  2. What is lim(h to 0) (sqrt(2x+3h)-sqrt2x)/(2h) equal to?

    Text Solution

    |

  3. If f(x) is an even function, then write whether f^(prime)(x) is eve...

    Text Solution

    |

  4. Let A=(X"inR:-1lexle1)andS be the subset of AxxB, defined by S=[(x,y)i...

    Text Solution

    |

  5. If f(x)=sqrt(x-1)/(x-4) defines a function of R, then what is its doma...

    Text Solution

    |

  6. Consider the function f(x)={{:((sin2x)/(5x),if ,xne0),((2)/(15),if,x...

    Text Solution

    |

  7. For the function f(x)=|x-3|, which of the following is not correct?

    Text Solution

    |

  8. If the function f9x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at ea...

    Text Solution

    |

  9. If f(x )=sqrt(25-x^(2)), then what is lim(x to 1) (f(x)-f(1))/(x-1) eq...

    Text Solution

    |

  10. What is lim(thetato0)(sqrt(1-costheta))/(theta) equal to?

    Text Solution

    |

  11. A function f:AtoR is defined by the equation f(x)=x^(2)-4x+5 where A...

    Text Solution

    |

  12. In which one of the following intervals is the function f(x)=x^(2)-5x...

    Text Solution

    |

  13. Let f(x+y)=f(x)f(y)andf(x)=1+xg(x)phi(x)" where "lim(x to 0) g(x)=a an...

    Text Solution

    |

  14. What is lim(xto(pi)/(6)) (2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1) to?

    Text Solution

    |

  15. A function f defined by f(x)=In(sqrt(x^(2)+1-x)) is

    Text Solution

    |

  16. The domain of the function f defined by f(x)=log(x)10 is

    Text Solution

    |

  17. lim(xtooo) (1-cos^(3)4x)/(x^(2)) is equal to

    Text Solution

    |

  18. If f(x)=3^(1+x)," then "f(x)f(y)f(z) is equal to

    Text Solution

    |

  19. The domain of the function f(x)=sqrt((2-x)(x-3)) is

    Text Solution

    |

  20. The value of k which makes f(x)={{:(sinx,xne0),(k,x=0):}"continuous ...

    Text Solution

    |