Home
Class 12
MATHS
Sum of first n natural numbers is given ...

Sum of first n natural numbers is given by `(n(n+1))/(2)`. What is the geometric mean of the series `1, 2, 4, 8, ……2^(n)?`

A

`2^(n)`

B

`2^((n)/(2))`

C

`2^(1//2)`

D

`2^(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the geometric mean of the series \(1, 2, 4, 8, \ldots, 2^n\), we can follow these steps: ### Step 1: Identify the series The series given is \(1, 2, 4, 8, \ldots, 2^n\). This can be expressed in terms of powers of 2: \[ 2^0, 2^1, 2^2, \ldots, 2^n \] ### Step 2: Count the number of terms The number of terms in this series is \(n + 1\) (from \(2^0\) to \(2^n\)). ### Step 3: Write the formula for the geometric mean The geometric mean (GM) of a series of numbers \(a_1, a_2, \ldots, a_k\) is given by: \[ GM = \sqrt[k]{a_1 \cdot a_2 \cdot \ldots \cdot a_k} \] In our case, \(k = n + 1\). ### Step 4: Calculate the product of the terms The product of the terms in our series is: \[ 2^0 \cdot 2^1 \cdot 2^2 \cdots 2^n = 2^{0 + 1 + 2 + \ldots + n} \] The sum of the first \(n\) natural numbers is given by the formula: \[ \text{Sum} = \frac{n(n + 1)}{2} \] Thus, we can write: \[ 2^{0 + 1 + 2 + \ldots + n} = 2^{\frac{n(n + 1)}{2}} \] ### Step 5: Substitute into the GM formula Now we substitute this product back into the formula for the geometric mean: \[ GM = \sqrt[n + 1]{2^{\frac{n(n + 1)}{2}}} \] ### Step 6: Simplify the expression Using the properties of exponents, we can simplify: \[ GM = 2^{\frac{n(n + 1)}{2(n + 1)}} \] This simplifies to: \[ GM = 2^{\frac{n}{2}} \] ### Final Answer Thus, the geometric mean of the series \(1, 2, 4, 8, \ldots, 2^n\) is: \[ \boxed{2^{\frac{n}{2}}} \]

To find the geometric mean of the series \(1, 2, 4, 8, \ldots, 2^n\), we can follow these steps: ### Step 1: Identify the series The series given is \(1, 2, 4, 8, \ldots, 2^n\). This can be expressed in terms of powers of 2: \[ 2^0, 2^1, 2^2, \ldots, 2^n \] ...
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2021(I)

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTION|108 Videos
  • SETS, RELATIONS, FUNCTIONS AND NUMBER SYSTEM

    NDA PREVIOUS YEARS|Exercise MCQ|271 Videos

Similar Questions

Explore conceptually related problems

What is the geometric mean of the sequence 1,2,4,8,dots,2^(n)

The geometric mean of the series 1,2,4,8,16,dots.,2^(n) is

If the sum of first ^(6)n' natural numbers is (n(n+1))/(2). Then,what will be the sum of first 'n'terms of the series of alternate positive and negative numbers of alternate positive 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-...

The sum of the first (n+1) natural number is _____.

Property 6 The sum of first n odd natural numbers is n^(2)

The sum of first n odd natural numbers is 2n-1 (b) 2n+1 (c) n^2 (d) n^2-1

The sum of first n natural numbers is given by the expression ( n ^(2))/(2) + (n)/(2). Factorise this expression.

The sum of squares of first n natural numbers is given by 1/6 n (n+1)(2n+1) or 1/6 (2n^3 + 3n^2 + n) . Find the sum of squares of the first 10 natural numbers.

16.The Sum Sn of first 'n' even natural numbers is given by the relation Sn=n(n+1) . Find n,if the sum is 420.

NDA PREVIOUS YEARS-SEQUENCE AND SERIES -MATH
  1. If the nth term of an arithmetic progression is 2n-1, then what is the...

    Text Solution

    |

  2. If the three observations are 3, -6 and -6, then what is their harmoni...

    Text Solution

    |

  3. Sum of first n natural numbers is given by (n(n+1))/(2). What is the g...

    Text Solution

    |

  4. If there are (2n+1) terms in A.P., then prove that the ratio of the su...

    Text Solution

    |

  5. If the sum of 'n' terms of an arithmetic progression is n^(2)-2n, then...

    Text Solution

    |

  6. If a,2a+2,3a+3 are in GP, then what is the fourth term of the GP?

    Text Solution

    |

  7. What is sum to the 100 terms of the series 9+99+999+…?

    Text Solution

    |

  8. If the AM and GM of two numbers are 5 and 4 respectively, then what is...

    Text Solution

    |

  9. The harmonic mean of two numbers is 21.6. If one of the numbers is 27,...

    Text Solution

    |

  10. If the sum of the first two terms and the sum of the first four terms ...

    Text Solution

    |

  11. If x >1 and log2 x,log3 x,logx 16 are in GP, then what is x equal to ?

    Text Solution

    |

  12. In a geometric progression with first term a and common ratio r, what ...

    Text Solution

    |

  13. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  14. If x^(2),y^(2),z^(2) are in AP, then y+z,z+x,x+y are in

    Text Solution

    |

  15. If x,2x+2,3x+3 are the first three terms of a GP, then what is its fou...

    Text Solution

    |

  16. Which term of the sequence 20 ,\ \ 19 1/4,\ \ 18 1/2,\ \ 17 3/4,\ d...

    Text Solution

    |

  17. If mth term of an AP is 1/n and its nth term is 1/m , then show that i...

    Text Solution

    |

  18. The 59th term of an AP is 449 and the 449th term is 59. Which term is ...

    Text Solution

    |

  19. If the AM and HM of two numbers are 27 and 12 respectively, then what ...

    Text Solution

    |

  20. Find the sum of all numbers between 200 and 400 which are divisible...

    Text Solution

    |