Home
Class 12
MATHS
What is ((sqrt3+i)/(sqrt3-i))^(6) equal ...

What is `((sqrt3+i)/(sqrt3-i))^(6)` equal to ?

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\left(\frac{\sqrt{3} + i}{\sqrt{3} - i}\right)^{6}\), we will follow these steps: ### Step 1: Rationalize the denominator We start with the expression: \[ \frac{\sqrt{3} + i}{\sqrt{3} - i} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(\sqrt{3} + i)(\sqrt{3} + i)}{(\sqrt{3} - i)(\sqrt{3} + i)} \] ### Step 2: Simplify the denominator Calculating the denominator: \[ (\sqrt{3} - i)(\sqrt{3} + i) = \sqrt{3}^2 - i^2 = 3 - (-1) = 3 + 1 = 4 \] ### Step 3: Simplify the numerator Calculating the numerator: \[ (\sqrt{3} + i)(\sqrt{3} + i) = \sqrt{3}^2 + 2\sqrt{3}i + i^2 = 3 + 2\sqrt{3}i - 1 = 2 + 2\sqrt{3}i \] ### Step 4: Combine the results Now we can combine the results: \[ \frac{2 + 2\sqrt{3}i}{4} = \frac{1 + \sqrt{3}i}{2} \] ### Step 5: Write in exponential form Next, we convert \(\frac{1 + \sqrt{3}i}{2}\) into exponential form. We find the modulus and argument: - The modulus is: \[ \left| \frac{1 + \sqrt{3}i}{2} \right| = \frac{1}{2} \sqrt{1^2 + (\sqrt{3})^2} = \frac{1}{2} \sqrt{1 + 3} = \frac{1}{2} \cdot 2 = 1 \] - The argument (angle) \(\theta\) is given by: \[ \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can express it as: \[ \frac{1 + \sqrt{3}i}{2} = e^{i\frac{\pi}{3}} \] ### Step 6: Raise to the power of 6 Now we raise the expression to the power of 6: \[ \left(e^{i\frac{\pi}{3}}\right)^{6} = e^{i\frac{6\pi}{3}} = e^{i2\pi} \] ### Step 7: Evaluate \(e^{i2\pi}\) Using Euler's formula: \[ e^{i2\pi} = \cos(2\pi) + i\sin(2\pi) = 1 + 0i = 1 \] ### Final Answer Thus, the final answer is: \[ \left(\frac{\sqrt{3} + i}{\sqrt{3} - i}\right)^{6} = 1 \]

To solve the problem \(\left(\frac{\sqrt{3} + i}{\sqrt{3} - i}\right)^{6}\), we will follow these steps: ### Step 1: Rationalize the denominator We start with the expression: \[ \frac{\sqrt{3} + i}{\sqrt{3} - i} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NDA PREVIOUS YEARS|Exercise MCQs|40 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos

Similar Questions

Explore conceptually related problems

What is ((sqrt(3)+i)/(sqrt(3)-i))^(6) equal to, where I = sqrt(-1) ?

What is (sqrt3+i)//(1+sqrt3i) equal to ?

((1+sqrt(3)i)/(1-sqrt(3)i))^(181) + ((1-sqrt(3)i)/(1+sqrt(3)i))^(181) is equal to ______________

(sqrt3+i)/(-1-isqrt3)=?

Prove that ((sqrt3+i)/(sqrt3-i)) ^(3n) +1=0 for all odd integral values of n.

sqrt(−3).sqrt(−6) is equal to ……………

((sqrt(3))/(2)+(i)/(2))^(177) is equal to

NDA PREVIOUS YEARS-COMPLEX NUMBERS-Multiple choice question
  1. What is the least positive integer n for which ((1+i)/(1-i))^(n)=1 ?

    Text Solution

    |

  2. What is the conjugate of ((1+2i)/(2+i))^(2)?

    Text Solution

    |

  3. What is ((sqrt3+i)/(sqrt3-i))^(6) equal to ?

    Text Solution

    |

  4. If omega is a complex cube root of unity, then what is omega^(10)+om...

    Text Solution

    |

  5. What is the value of (-1+isqrt3)^(48)?

    Text Solution

    |

  6. What is the vlaue of 1+i^(2)+i^(4)+i^(60)+....+i^(100), where i=sqrt...

    Text Solution

    |

  7. If z=1+cos(pi/5)+isin(pi/5) then sin(argz) is equal to

    Text Solution

    |

  8. What is modulus of (1)/(1+3i)-(1)/(1-3i) ?

    Text Solution

    |

  9. If omega is the imaginary cube root of unity, then what is (2-omega+2...

    Text Solution

    |

  10. What is the value of (1+i)^(5)-(1-i)^(5), where i=sqrt(-1)?

    Text Solution

    |

  11. What are the square roots of -2i ? (i=sqrt(-1))

    Text Solution

    |

  12. If z=1+i tan alpha where pi lt alpha lt(3pi)/(2), then what is |z| equ...

    Text Solution

    |

  13. The smallest positive integral value of n for which ((1-i)/(1+i))^(n) ...

    Text Solution

    |

  14. If alpha and beta are the complex cube roots of unity, then what is ...

    Text Solution

    |

  15. If p,q,r are positive integers and omega is the cube root of unity and...

    Text Solution

    |

  16. If z=(1+2i)/(2-i)-(2-i)/(1+2i), then what is the value of z^(2)+zbarz ...

    Text Solution

    |

  17. What is the argument of (1-sintheta)+icos theta ? (i=sqrt(-1))

    Text Solution

    |

  18. If A+iB =(4+2i)/(1-2i)where i=sqrt(-1) then what is the vlue of A ?

    Text Solution

    |

  19. If z=-barz, then which one of the following is correct?

    Text Solution

    |

  20. Consider the following statements : 1. (omega^(10)+1)^(7)+omega=0 ...

    Text Solution

    |