Home
Class 12
MATHS
If z=(1+2i)/(2-i)-(2-i)/(1+2i), then wha...

If `z=(1+2i)/(2-i)-(2-i)/(1+2i),` then what is the value of `z^(2)+zbarz`
`(i=sqrt(-1))`

A

0

B

`-1`

C

1

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( z^2 + \overline{z} \) where \( z = \frac{1 + 2i}{2 - i} - \frac{2 - i}{1 + 2i} \). ### Step 1: Simplifying \( z \) First, we will simplify \( z \): \[ z = \frac{1 + 2i}{2 - i} - \frac{2 - i}{1 + 2i} \] To combine these fractions, we need a common denominator. The common denominator will be \( (2 - i)(1 + 2i) \). ### Step 2: Finding the first fraction Calculating the first fraction: \[ \frac{1 + 2i}{2 - i} \cdot \frac{1 + 2i}{1 + 2i} = \frac{(1 + 2i)(1 + 2i)}{(2 - i)(1 + 2i)} \] Calculating the numerator: \[ (1 + 2i)(1 + 2i) = 1 + 4i + 4i^2 = 1 + 4i - 4 = -3 + 4i \] Calculating the denominator: \[ (2 - i)(1 + 2i) = 2 + 4i - i - 2i^2 = 2 + 3i + 2 = 4 + 3i \] Thus, the first fraction simplifies to: \[ \frac{-3 + 4i}{4 + 3i} \] ### Step 3: Finding the second fraction Now, calculating the second fraction: \[ \frac{2 - i}{1 + 2i} \cdot \frac{1 - 2i}{1 - 2i} = \frac{(2 - i)(1 - 2i)}{(1 + 2i)(1 - 2i)} \] Calculating the numerator: \[ (2 - i)(1 - 2i) = 2 - 4i - i + 2i^2 = 2 - 5i - 2 = 0 - 5i = -5i \] Calculating the denominator: \[ (1 + 2i)(1 - 2i) = 1 - 4i^2 = 1 + 4 = 5 \] Thus, the second fraction simplifies to: \[ \frac{-5i}{5} = -i \] ### Step 4: Combine the fractions Now we can combine the two fractions: \[ z = \frac{-3 + 4i}{4 + 3i} + i \] To combine, we rewrite \( i \) as \( \frac{0 + 5i}{5} \): \[ z = \frac{-3 + 4i + 0 + 5i}{4 + 3i} = \frac{-3 + 9i}{4 + 3i} \] ### Step 5: Rationalizing the denominator Now we rationalize the denominator: \[ z = \frac{(-3 + 9i)(4 - 3i)}{(4 + 3i)(4 - 3i)} \] Calculating the denominator: \[ (4 + 3i)(4 - 3i) = 16 + 9 = 25 \] Calculating the numerator: \[ (-3 + 9i)(4 - 3i) = -12 + 9 \cdot 4i + 3 \cdot 9 = -12 + 36i + 27 = 15 + 36i \] Thus, we have: \[ z = \frac{15 + 36i}{25} = \frac{15}{25} + \frac{36}{25}i = \frac{3}{5} + \frac{36}{25}i \] ### Step 6: Finding \( z^2 + \overline{z} \) Now, we need to find \( z^2 \) and \( \overline{z} \): 1. **Finding \( z^2 \)**: \[ z^2 = \left(\frac{3}{5} + \frac{36}{25}i\right)^2 = \left(\frac{3}{5}\right)^2 + 2 \cdot \frac{3}{5} \cdot \frac{36}{25}i + \left(\frac{36}{25}i\right)^2 \] Calculating: \[ = \frac{9}{25} + \frac{216}{125}i - \frac{1296}{625} \] 2. **Finding \( \overline{z} \)**: \[ \overline{z} = \frac{3}{5} - \frac{36}{25}i \] ### Step 7: Adding \( z^2 + \overline{z} \) Now we can find \( z^2 + \overline{z} \): \[ z^2 + \overline{z} = \left(\frac{9}{25} - \frac{1296}{625}\right) + \left(\frac{216}{125}i - \frac{36}{25}i\right) \] Combine the real parts and the imaginary parts: Real part: \[ \frac{9}{25} - \frac{1296}{625} = \frac{225}{625} - \frac{1296}{625} = -\frac{1071}{625} \] Imaginary part: \[ \frac{216}{125} - \frac{36}{25} = \frac{216}{125} - \frac{180}{125} = \frac{36}{125} \] Thus, the final result is: \[ z^2 + \overline{z} = -\frac{1071}{625} + \frac{36}{125}i \]

To solve the problem, we need to find the value of \( z^2 + \overline{z} \) where \( z = \frac{1 + 2i}{2 - i} - \frac{2 - i}{1 + 2i} \). ### Step 1: Simplifying \( z \) First, we will simplify \( z \): \[ z = \frac{1 + 2i}{2 - i} - \frac{2 - i}{1 + 2i} ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NDA PREVIOUS YEARS|Exercise MCQs|40 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos

Similar Questions

Explore conceptually related problems

If z=(1+i)/(sqrt(2)), then the value of z^(1929) is

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If Z=1+i , where i=sqrt(-1) , then what is the modulus of Z+(2)/(Z) ?

If z = (-2)/(1 + sqrt(3i)) , then the value of age z is

If z= 1/((1+i)(1-2i)) , then |z| is

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If z=x+iy=z=x+iy=((1)/(sqrt(2))-(i)/(sqrt(2)))^(-25) ,where i=sqrt(-)1, then what is the fundamental amplitude of (z-sqrt(2))/(z-i sqrt(2))?

NDA PREVIOUS YEARS-COMPLEX NUMBERS-Multiple choice question
  1. If alpha and beta are the complex cube roots of unity, then what is ...

    Text Solution

    |

  2. If p,q,r are positive integers and omega is the cube root of unity and...

    Text Solution

    |

  3. If z=(1+2i)/(2-i)-(2-i)/(1+2i), then what is the value of z^(2)+zbarz ...

    Text Solution

    |

  4. What is the argument of (1-sintheta)+icos theta ? (i=sqrt(-1))

    Text Solution

    |

  5. If A+iB =(4+2i)/(1-2i)where i=sqrt(-1) then what is the vlue of A ?

    Text Solution

    |

  6. If z=-barz, then which one of the following is correct?

    Text Solution

    |

  7. Consider the following statements : 1. (omega^(10)+1)^(7)+omega=0 ...

    Text Solution

    |

  8. The value of the sum sum(n=1)^(13) (i^(n)+i^(n+1))where i =sqrt(-1) is...

    Text Solution

    |

  9. What is the modulus of (sqrt2+i)/(sqrt2-i)where i =sqrt(-1)?

    Text Solution

    |

  10. What is sqrt(-10where I =sqrt(-1) equal to ?

    Text Solution

    |

  11. What is the argument of the complex number (-1-i) where i=sqrt(-1)?

    Text Solution

    |

  12. What is one of the square roots of 3+4i, where i=sqrt(-1) ?

    Text Solution

    |

  13. If P and Q are two compex numbers, then the modulus of the quotient o...

    Text Solution

    |

  14. Let z=x+iy where x,y are real variable i=sqrt(-1). If |2z-1|=|z-2|,the...

    Text Solution

    |

  15. If |z+barz|=|z-barz| then locus of z is

    Text Solution

    |

  16. What is the arugument of the complex number ((1+i) (2+i))/(3-i) whe...

    Text Solution

    |

  17. If z is a complex number such that |z|=4 and arg(z) =(5pi)/6 then z is...

    Text Solution

    |

  18. What is ((1+i)^(4n+5))/((1-i)^(4n+3)) equal to, where n is a natural n...

    Text Solution

    |

  19. If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt theta...

    Text Solution

    |

  20. If 1, omega, omega^(2) are the cube roots of unity, then the value of...

    Text Solution

    |