Home
Class 12
MATHS
What is ((1+i)^(4n+5))/((1-i)^(4n+3)) eq...

What is `((1+i)^(4n+5))/((1-i)^(4n+3))` equal to, where n is a natural number and `i=sqrt(-1)` ?

A

2

B

2i

C

`-2`

D

`i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(1+i)^{4n+5}}{(1-i)^{4n+3}}\), where \(n\) is a natural number and \(i = \sqrt{-1}\), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression as: \[ \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} \] ### Step 2: Factor out common powers We can factor out the common powers in the numerator and denominator: \[ = (1+i)^{4n+5} \cdot (1-i)^{-(4n+3)} = (1+i)^{4n+5} \cdot (1-i)^{-4n-3} \] ### Step 3: Combine the powers This can be expressed as: \[ = (1+i)^{4n+5} \cdot (1-i)^{-4n-3} = (1+i)^{4n+5} \cdot (1-i)^{-4n-3} \] ### Step 4: Use properties of powers Using the property of exponents, we can combine the powers: \[ = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = (1+i)^{4n+5} \cdot (1-i)^{-4n-3} \] ### Step 5: Simplify using polar form We can convert \(1+i\) and \(1-i\) into polar form: \[ 1+i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \quad \text{and} \quad 1-i = \sqrt{2} \left( \cos \frac{-\pi}{4} + i \sin \frac{-\pi}{4} \right) \] ### Step 6: Calculate the powers Now we can calculate the powers: \[ (1+i)^{4n+5} = (\sqrt{2})^{4n+5} \left( \cos \frac{(4n+5)\pi}{4} + i \sin \frac{(4n+5)\pi}{4} \right) \] \[ (1-i)^{4n+3} = (\sqrt{2})^{4n+3} \left( \cos \frac{-(4n+3)\pi}{4} + i \sin \frac{-(4n+3)\pi}{4} \right) \] ### Step 7: Combine the results Now we can combine the results: \[ = \frac{(\sqrt{2})^{4n+5}}{(\sqrt{2})^{4n+3}} \cdot \frac{\cos \frac{(4n+5)\pi}{4} + i \sin \frac{(4n+5)\pi}{4}}{\cos \frac{-(4n+3)\pi}{4} + i \sin \frac{-(4n+3)\pi}{4}} \] \[ = 2 \cdot \frac{\cos \frac{(4n+5)\pi}{4} + i \sin \frac{(4n+5)\pi}{4}}{\cos \frac{(4n+3)\pi}{4} + i \sin \frac{(4n+3)\pi}{4}} \] ### Step 8: Final simplification The final result simplifies to: \[ = 2 \cdot \text{(some complex number)} \] ### Final Result Thus, the expression simplifies to: \[ 2 \]

To solve the expression \(\frac{(1+i)^{4n+5}}{(1-i)^{4n+3}}\), where \(n\) is a natural number and \(i = \sqrt{-1}\), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression as: \[ \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} = \frac{(1+i)^{4n+5}}{(1-i)^{4n+3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NDA PREVIOUS YEARS|Exercise MCQs|40 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos

Similar Questions

Explore conceptually related problems

The number ((1+i)^(n))/((1-i)^(n-2)) is equal to

What is sum_(r = 1)^(8n + 7)i^(r) equal to where i = sqrt(-1) ?

((1+i)/(1-i))^(4n+1) where n is a positive integer.

1+5+9+...+(4n-3)=n(2n-1) for all natural numbers n

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

What is the modulus of the complex number i^(2n+1) (-i)^(2n-1) , where n in N and i=sqrt(-1) ?

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

Show that ((-1+sqrt(3)i)/(2))^(n)+((-1-sqrt(3i))/(2))^(n) is equal to 2 when n is a multiple of 3 and 3 is equal to -1 when n is any other positive integer.

Show that (-sqrt(-1))^(4n+3) =i , where n is a positive integer.

NDA PREVIOUS YEARS-COMPLEX NUMBERS-Multiple choice question
  1. What is the arugument of the complex number ((1+i) (2+i))/(3-i) whe...

    Text Solution

    |

  2. If z is a complex number such that |z|=4 and arg(z) =(5pi)/6 then z is...

    Text Solution

    |

  3. What is ((1+i)^(4n+5))/((1-i)^(4n+3)) equal to, where n is a natural n...

    Text Solution

    |

  4. If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt theta...

    Text Solution

    |

  5. If 1, omega, omega^(2) are the cube roots of unity, then the value of...

    Text Solution

    |

  6. What is the square root of i, where i=sqrt(-1) ?

    Text Solution

    |

  7. (x^(3)-1) can be fa ctorised as

    Text Solution

    |

  8. What is [(sin (pi)/6 +i(1-cos (pi/6)))/(sin (pi)/6 -(1-cos (pi/6)))]^3...

    Text Solution

    |

  9. What is the real part of (sin x +icos x)^3 where i=sqrt(-1)?

    Text Solution

    |

  10. If z(1) and z(2) are complex number with |z(1)|-|z(2)|, then which of ...

    Text Solution

    |

  11. if the point z1=1+i where i=sqrt(-1) is the reflection of a point z2=x...

    Text Solution

    |

  12. z bar(z)+(3-i)z+(3+i)bar(z)+1=0 represents a circle with

    Text Solution

    |

  13. Suppose w is a cube root of unity with omega != 1. Suppose P and Q are...

    Text Solution

    |

  14. If z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25), where i=sqrt(-1), then wha...

    Text Solution

    |

  15. Let z(1),z(2) and z(3) be non-zero complex numbers satisfying z^(2)=...

    Text Solution

    |

  16. Let z(1),z(2) and z(3) be non-zero complex numbers satisfying z^(2)=...

    Text Solution

    |

  17. Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=...

    Text Solution

    |

  18. Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=...

    Text Solution

    |

  19. Suppose omega(1) and omega(2) are two distinct cube roots of unity ...

    Text Solution

    |

  20. What is omega^(100)+omega^(200)+omega^(300) equal to, where omega is t...

    Text Solution

    |