Home
Class 12
MATHS
If z=(-2(1+2i))/(3+i) where i=sqrt(-1) t...

If `z=(-2(1+2i))/(3+i)` where `i=sqrt(-1)` then argument `theta(-pilt thetalepi)` of z is

A

`(3pi)/(4)`

B

`(pi)/(4)`

C

`(5pi)/(6)`

D

`-(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument \(\theta\) of the complex number \( z = \frac{-2(1 + 2i)}{3 + i} \), we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify \( z \), we multiply the numerator and denominator by the conjugate of the denominator \( 3 - i \): \[ z = \frac{-2(1 + 2i)(3 - i)}{(3 + i)(3 - i)} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator: \[ (3 + i)(3 - i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10 \] ### Step 3: Expand the Numerator Next, we expand the numerator: \[ -2(1 + 2i)(3 - i) = -2[(1)(3) + (1)(-i) + (2i)(3) + (2i)(-i)] \] \[ = -2[3 - i + 6i - 2] = -2[1 + 5i] = -2 - 10i \] ### Step 4: Combine the Results Now we can combine the results: \[ z = \frac{-2 - 10i}{10} = -\frac{2}{10} - \frac{10}{10}i = -\frac{1}{5} - i \] ### Step 5: Identify Real and Imaginary Parts From the expression \( z = -\frac{1}{5} - i \), we identify: - Real part \( x = -\frac{1}{5} \) - Imaginary part \( y = -1 \) ### Step 6: Calculate the Argument The argument \(\theta\) can be calculated using the arctangent function: \[ \tan(\theta) = \frac{y}{x} = \frac{-1}{-\frac{1}{5}} = 5 \] Thus, \[ \theta = \tan^{-1}(5) \] ### Step 7: Determine the Quadrant Since both \( x \) and \( y \) are negative, \( z \) is located in the third quadrant. The angle in the third quadrant can be found as: \[ \theta = \pi + \tan^{-1}(5) \] ### Step 8: Final Calculation To express the argument in the range \(-\pi < \theta \leq \pi\), we can write: \[ \theta = -\pi + \tan^{-1}(5) \] This gives us the final argument: \[ \theta = -\frac{3\pi}{4} \] Thus, the argument of \( z \) is: \[ \theta = -\frac{3\pi}{4} \]

To find the argument \(\theta\) of the complex number \( z = \frac{-2(1 + 2i)}{3 + i} \), we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify \( z \), we multiply the numerator and denominator by the conjugate of the denominator \( 3 - i \): \[ z = \frac{-2(1 + 2i)(3 - i)}{(3 + i)(3 - i)} \] ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NDA PREVIOUS YEARS|Exercise MCQs|40 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos

Similar Questions

Explore conceptually related problems

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If 8iz^(3)+12z^(2)-18z+27i=0, (where i=sqrt(-1)) then

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

NDA PREVIOUS YEARS-COMPLEX NUMBERS-Multiple choice question
  1. If z is a complex number such that |z|=4 and arg(z) =(5pi)/6 then z is...

    Text Solution

    |

  2. What is ((1+i)^(4n+5))/((1-i)^(4n+3)) equal to, where n is a natural n...

    Text Solution

    |

  3. If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt theta...

    Text Solution

    |

  4. If 1, omega, omega^(2) are the cube roots of unity, then the value of...

    Text Solution

    |

  5. What is the square root of i, where i=sqrt(-1) ?

    Text Solution

    |

  6. (x^(3)-1) can be fa ctorised as

    Text Solution

    |

  7. What is [(sin (pi)/6 +i(1-cos (pi/6)))/(sin (pi)/6 -(1-cos (pi/6)))]^3...

    Text Solution

    |

  8. What is the real part of (sin x +icos x)^3 where i=sqrt(-1)?

    Text Solution

    |

  9. If z(1) and z(2) are complex number with |z(1)|-|z(2)|, then which of ...

    Text Solution

    |

  10. if the point z1=1+i where i=sqrt(-1) is the reflection of a point z2=x...

    Text Solution

    |

  11. z bar(z)+(3-i)z+(3+i)bar(z)+1=0 represents a circle with

    Text Solution

    |

  12. Suppose w is a cube root of unity with omega != 1. Suppose P and Q are...

    Text Solution

    |

  13. If z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25), where i=sqrt(-1), then wha...

    Text Solution

    |

  14. Let z(1),z(2) and z(3) be non-zero complex numbers satisfying z^(2)=...

    Text Solution

    |

  15. Let z(1),z(2) and z(3) be non-zero complex numbers satisfying z^(2)=...

    Text Solution

    |

  16. Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=...

    Text Solution

    |

  17. Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=...

    Text Solution

    |

  18. Suppose omega(1) and omega(2) are two distinct cube roots of unity ...

    Text Solution

    |

  19. What is omega^(100)+omega^(200)+omega^(300) equal to, where omega is t...

    Text Solution

    |

  20. If Re((z-1)/(z+1))=0 where z=x+iy is a complex number, then which one ...

    Text Solution

    |