Home
Class 12
MATHS
If z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25...

If `z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25), where i=sqrt(-1),` then what is the fundamental amplitude of `(z-sqrt2)/(z-sqrt2)` ?

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(3)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression for \( z \): \[ z = \left( \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)^{-25} \] ### Step 1: Convert to Polar Form First, we convert \( \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \) into polar form. The modulus \( r \) and argument \( \theta \) of the complex number can be calculated as follows: \[ r = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \left( -\frac{1}{\sqrt{2}} \right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} = 1 \] The argument \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right) = \tan^{-1}(-1) = -\frac{\pi}{4} \] Thus, we can express the complex number in polar form: \[ \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} = 1 \cdot \text{cis}\left(-\frac{\pi}{4}\right) \] where \( \text{cis}(\theta) = \cos(\theta) + i\sin(\theta) \). ### Step 2: Raise to the Power of -25 Now we raise this expression to the power of -25: \[ z = \left( \text{cis}\left(-\frac{\pi}{4}\right) \right)^{-25} = \text{cis}\left(25 \cdot \frac{\pi}{4}\right) \] ### Step 3: Simplify the Argument Next, we simplify the argument: \[ 25 \cdot \frac{\pi}{4} = \frac{25\pi}{4} \] To find the equivalent angle within the range \( [0, 2\pi) \), we can subtract \( 2\pi \): \[ \frac{25\pi}{4} - 6\pi = \frac{25\pi}{4} - \frac{24\pi}{4} = \frac{\pi}{4} \] Thus, we have: \[ z = \text{cis}\left(\frac{\pi}{4}\right) \] ### Step 4: Calculate \( z - \sqrt{2} \) and \( z + \sqrt{2} \) Now we need to calculate \( z - \sqrt{2} \) and \( z + \sqrt{2} \): \[ z - \sqrt{2} = \text{cis}\left(\frac{\pi}{4}\right) - \sqrt{2} \] \[ z + \sqrt{2} = \text{cis}\left(\frac{\pi}{4}\right) + \sqrt{2} \] ### Step 5: Calculate the Fundamental Amplitude The fundamental amplitude of \( \frac{z - \sqrt{2}}{z + \sqrt{2}} \) is given by: \[ \text{arg}\left(\frac{z - \sqrt{2}}{z + \sqrt{2}}\right) = \text{arg}(z - \sqrt{2}) - \text{arg}(z + \sqrt{2}) \] Using the properties of the argument function, we can find the arguments of \( z - \sqrt{2} \) and \( z + \sqrt{2} \). However, since both terms involve the same \( z \), we can simplify our calculations. ### Final Result The fundamental amplitude can be expressed as: \[ \text{arg}\left(\frac{z - \sqrt{2}}{z + \sqrt{2}}\right) = \text{arg}(z) = \frac{\pi}{4} \]

To solve the problem, we start with the expression for \( z \): \[ z = \left( \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)^{-25} \] ### Step 1: Convert to Polar Form First, we convert \( \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \) into polar form. The modulus \( r \) and argument \( \theta \) of the complex number can be calculated as follows: ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NDA PREVIOUS YEARS|Exercise MCQs|40 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos

Similar Questions

Explore conceptually related problems

If z=x+iy=z=x+iy=((1)/(sqrt(2))-(i)/(sqrt(2)))^(-25) ,where i=sqrt(-)1, then what is the fundamental amplitude of (z-sqrt(2))/(z-i sqrt(2))?

If Z=1+i , where i=sqrt(-1) , then what is the modulus of Z+(2)/(Z) ?

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If z=sqrt(2i), then z is equal to

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

What is the modulus of (sqrt2+i)/(sqrt2-i)where i =sqrt(-1) ?

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

NDA PREVIOUS YEARS-COMPLEX NUMBERS-Multiple choice question
  1. z bar(z)+(3-i)z+(3+i)bar(z)+1=0 represents a circle with

    Text Solution

    |

  2. Suppose w is a cube root of unity with omega != 1. Suppose P and Q are...

    Text Solution

    |

  3. If z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25), where i=sqrt(-1), then wha...

    Text Solution

    |

  4. Let z(1),z(2) and z(3) be non-zero complex numbers satisfying z^(2)=...

    Text Solution

    |

  5. Let z(1),z(2) and z(3) be non-zero complex numbers satisfying z^(2)=...

    Text Solution

    |

  6. Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=...

    Text Solution

    |

  7. Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=...

    Text Solution

    |

  8. Suppose omega(1) and omega(2) are two distinct cube roots of unity ...

    Text Solution

    |

  9. What is omega^(100)+omega^(200)+omega^(300) equal to, where omega is t...

    Text Solution

    |

  10. If Re((z-1)/(z+1))=0 where z=x+iy is a complex number, then which one ...

    Text Solution

    |

  11. If z=((sqrt3)/(2)+(i)/(2))^(107)+((sqrt3)/(2)-(i)/(2))^(107), then wha...

    Text Solution

    |

  12. What is the number of distinct solutions of the equation z^2+|z|=0 (wh...

    Text Solution

    |

  13. What is sqrt((1+(omega)^(2))/(1+(omega))) equal to, where omega is the...

    Text Solution

    |

  14. The value of i^(2n)+i^(2n+1)+i^(2n+2)+i^(2n+3), where i=sqrt(-1), is

    Text Solution

    |

  15. What is the value of ((1=-+isqrt3)/(2))^(3n)+((-1+isqrt3)/(2))^(3n) wh...

    Text Solution

    |

  16. The modulus and principle argument of the complex number (1+2i)/(1-(1...

    Text Solution

    |

  17. IF |z+4|le3, then the maximum value of |z+1| is

    Text Solution

    |

  18. The number of roots of the equation z^2 = 2 barz is

    Text Solution

    |

  19. If A=[{:(4i-6,10i),(14i,6+4i):}]and k(1)/(ki), where i- sqrt(-1), then...

    Text Solution

    |

  20. The smallest positive integer n for which ((1+i)/(1-i))^n=i is 8 (b) 1...

    Text Solution

    |