Home
Class 12
MATHS
The value of i^(2n)+i^(2n+1)+i^(2n+2)+i^...

The value of `i^(2n)+i^(2n+1)+i^(2n+2)+i^(2n+3),` where `i=sqrt(-1),` is

A

0

B

1

C

`i`

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} \), where \( i = \sqrt{-1} \), we will first analyze the powers of \( i \). ### Step 1: Understand the powers of \( i \) The powers of \( i \) cycle every 4 terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and the cycle repeats) ### Step 2: Determine \( i^{2n} \), \( i^{2n+1} \), \( i^{2n+2} \), and \( i^{2n+3} \) Since the powers of \( i \) repeat every 4, we can express \( 2n \), \( 2n+1 \), \( 2n+2 \), and \( 2n+3 \) in terms of their residues modulo 4. - \( 2n \mod 4 \) can be either \( 0 \) or \( 2 \) depending on whether \( n \) is even or odd. - \( 2n+1 \mod 4 \) will be \( 1 \) if \( n \) is even and \( 3 \) if \( n \) is odd. - \( 2n+2 \mod 4 \) will be \( 2 \) if \( n \) is even and \( 0 \) if \( n \) is odd. - \( 2n+3 \mod 4 \) will be \( 3 \) if \( n \) is even and \( 1 \) if \( n \) is odd. ### Step 3: Evaluate the expression based on the parity of \( n \) #### Case 1: \( n \) is even - \( 2n \mod 4 = 0 \) → \( i^{2n} = 1 \) - \( 2n+1 \mod 4 = 1 \) → \( i^{2n+1} = i \) - \( 2n+2 \mod 4 = 2 \) → \( i^{2n+2} = -1 \) - \( 2n+3 \mod 4 = 3 \) → \( i^{2n+3} = -i \) So, the expression becomes: \[ i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} = 1 + i - 1 - i = 0 \] #### Case 2: \( n \) is odd - \( 2n \mod 4 = 2 \) → \( i^{2n} = -1 \) - \( 2n+1 \mod 4 = 3 \) → \( i^{2n+1} = -i \) - \( 2n+2 \mod 4 = 0 \) → \( i^{2n+2} = 1 \) - \( 2n+3 \mod 4 = 1 \) → \( i^{2n+3} = i \) So, the expression becomes: \[ i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} = -1 - i + 1 + i = 0 \] ### Conclusion In both cases, whether \( n \) is even or odd, we find that: \[ i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} = 0 \] ### Final Answer The value of \( i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} \) is \( \boxed{0} \).

To solve the expression \( i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} \), where \( i = \sqrt{-1} \), we will first analyze the powers of \( i \). ### Step 1: Understand the powers of \( i \) The powers of \( i \) cycle every 4 terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NDA PREVIOUS YEARS|Exercise MCQs|40 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt-1 and nEN.

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

NDA PREVIOUS YEARS-COMPLEX NUMBERS-Multiple choice question
  1. What is the number of distinct solutions of the equation z^2+|z|=0 (wh...

    Text Solution

    |

  2. What is sqrt((1+(omega)^(2))/(1+(omega))) equal to, where omega is the...

    Text Solution

    |

  3. The value of i^(2n)+i^(2n+1)+i^(2n+2)+i^(2n+3), where i=sqrt(-1), is

    Text Solution

    |

  4. What is the value of ((1=-+isqrt3)/(2))^(3n)+((-1+isqrt3)/(2))^(3n) wh...

    Text Solution

    |

  5. The modulus and principle argument of the complex number (1+2i)/(1-(1...

    Text Solution

    |

  6. IF |z+4|le3, then the maximum value of |z+1| is

    Text Solution

    |

  7. The number of roots of the equation z^2 = 2 barz is

    Text Solution

    |

  8. If A=[{:(4i-6,10i),(14i,6+4i):}]and k(1)/(ki), where i- sqrt(-1), then...

    Text Solution

    |

  9. The smallest positive integer n for which ((1+i)/(1-i))^n=i is 8 (b) 1...

    Text Solution

    |

  10. Geometrically Re(z^(2)-i)=2,where i=sqrt(-1) and Re is the real part, ...

    Text Solution

    |

  11. What is the principal argument of (-1-i), where i=sqrt(-1) ?

    Text Solution

    |

  12. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  13. The number of non-zero integral sol ution of the e quation |1- 2i...

    Text Solution

    |

  14. If alpha and beta Are different complex number with |alpha|=1, then wh...

    Text Solution

    |

  15. What is i^(100)+i^(1001)+i^(1002)+i^(1003) equal to (where i=sqrt(-1)...

    Text Solution

    |

  16. The modulus -amplitude from of sqrt3+i, where i =sqrt(-1) is

    Text Solution

    |

  17. What is the value of the sum sum(n=2)^(11) (i^(n)+i^(n+1)), where i=sq...

    Text Solution

    |

  18. What is the value of ((1=-+isqrt3)/(2))^(3n)+((-1+isqrt3)/(2))^(3n) wh...

    Text Solution

    |

  19. Which one of the following is correct in respect of the cube roots o...

    Text Solution

    |

  20. If A={x inZ:x^(2)-1=0}and B={x inZ:x^(2)+x+1=0}, where Z is set of c...

    Text Solution

    |