Home
Class 12
MATHS
Consider the function f(x)=0.75x^(4)-x...

Consider the function `f(x)=0.75x^(4)-x^(3)-9x^(2)+7` What is the maximum value of the function ?

A

1

B

3

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = 0.75x^4 - x^3 - 9x^2 + 7 \), we will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) We start by differentiating the function with respect to \( x \): \[ f'(x) = \frac{d}{dx}(0.75x^4 - x^3 - 9x^2 + 7) \] Using the power rule, we get: \[ f'(x) = 0.75 \cdot 4x^3 - 3x^2 - 18x = 3x^3 - 3x^2 - 18x \] ### Step 2: Set the first derivative to zero To find the critical points, we set \( f'(x) = 0 \): \[ 3x^3 - 3x^2 - 18x = 0 \] Factoring out \( 3x \): \[ 3x(x^2 - x - 6) = 0 \] This gives us: \[ x = 0 \quad \text{or} \quad x^2 - x - 6 = 0 \] ### Step 3: Solve the quadratic equation Now we solve the quadratic equation \( x^2 - x - 6 = 0 \) using the factorization method: \[ x^2 - x - 6 = (x - 3)(x + 2) = 0 \] Thus, the solutions are: \[ x = 3 \quad \text{and} \quad x = -2 \] ### Step 4: Find the second derivative \( f''(x) \) Next, we find the second derivative to determine the nature of the critical points: \[ f''(x) = \frac{d}{dx}(3x^3 - 3x^2 - 18x) = 9x^2 - 6x - 18 \] ### Step 5: Evaluate the second derivative at critical points Now we evaluate \( f''(x) \) at the critical points \( x = 0, 3, -2 \): 1. For \( x = 0 \): \[ f''(0) = 9(0)^2 - 6(0) - 18 = -18 \quad (\text{concave down, local maximum}) \] 2. For \( x = 3 \): \[ f''(3) = 9(3)^2 - 6(3) - 18 = 81 - 18 - 18 = 45 \quad (\text{concave up, local minimum}) \] 3. For \( x = -2 \): \[ f''(-2) = 9(-2)^2 - 6(-2) - 18 = 36 + 12 - 18 = 30 \quad (\text{concave up, local minimum}) \] ### Step 6: Evaluate the function at critical points Now, we evaluate \( f(x) \) at the critical points to find the maximum value: 1. \( f(0) \): \[ f(0) = 0.75(0)^4 - (0)^3 - 9(0)^2 + 7 = 7 \] 2. \( f(3) \): \[ f(3) = 0.75(3)^4 - (3)^3 - 9(3)^2 + 7 \] \[ = 0.75(81) - 27 - 81 + 7 = 60.75 - 27 - 81 + 7 = -0.25 \] 3. \( f(-2) \): \[ f(-2) = 0.75(-2)^4 - (-2)^3 - 9(-2)^2 + 7 \] \[ = 0.75(16) + 8 - 36 + 7 = 12 + 8 - 36 + 7 = -9 \] ### Conclusion The maximum value of the function occurs at \( x = 0 \): \[ \text{Maximum value} = f(0) = 7 \]

To find the maximum value of the function \( f(x) = 0.75x^4 - x^3 - 9x^2 + 7 \), we will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) We start by differentiating the function with respect to \( x \): \[ f'(x) = \frac{d}{dx}(0.75x^4 - x^3 - 9x^2 + 7) \] ...
Promotional Banner

Topper's Solved these Questions

  • 3-D GEOMETRY

    NDA PREVIOUS YEARS|Exercise MCQ|147 Videos
  • BINOMIAL THEROREM, MATHEMATICAL INDUCTION

    NDA PREVIOUS YEARS|Exercise MQS|65 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(X)=(x^(2)-x+1)/(x^(2)+x+1) What is the maximum value of the fucnction ?

Consider the function f(X)=(x^(2)-x+1)/(x^(2)+x+1) What is the minimum value of the funciton ?

The maximum value of the function f(x)=sin x;[0,Pi] is

Find the maximum value of the function f(x)=5+9x-18x^(2)

What is the maximum value of the function y=(2x^(2)+3x+4)/(x^(2)+x+3)

Consider function f(x)=2x+3x^(2/3)

NDA PREVIOUS YEARS-APPLICATION OF DERIVATIVES -Example
  1. Consider the function f(X)=(x^(2)-1)/(x^(2)+1) where x in R At what ...

    Text Solution

    |

  2. What is the minimum value of f(X)?

    Text Solution

    |

  3. Consider the function f(x)=0.75x^(4)-x^(3)-9x^(2)+7 What is the max...

    Text Solution

    |

  4. Consider the following value of the function ? 1 The functin attains...

    Text Solution

    |

  5. Consider the parametric equation

    Text Solution

    |

  6. What is (dy)/(dx) equal to ?

    Text Solution

    |

  7. What is (d^(2)y)/(dx^(2)) equal to ?

    Text Solution

    |

  8. The function f(x)=(x^(2))/(e^(x)) monotonically increasing if

    Text Solution

    |

  9. Consider the following statements 1 f(x)=In x is an increasing funci...

    Text Solution

    |

  10. Consider the fucntion f(x)=((1)/(x))^(2x^2) , where xgt0. At what v...

    Text Solution

    |

  11. The maximum value of the function is

    Text Solution

    |

  12. Consider f(x)=(x^(2))/(2)-kx +1 such that f(0) =0 and f(3)=15 The va...

    Text Solution

    |

  13. f''(-2/3) is equal to

    Text Solution

    |

  14. Separate the intervals of monotonocity for the function f(x)=-2x^3-9x^...

    Text Solution

    |

  15. The function f(x) is a decreasing funciton in the interval

    Text Solution

    |

  16. Consider the function f(theta)=4(sin^(2) theta + cos^(4) theta) what...

    Text Solution

    |

  17. What is the minimum value of the function f(theta) ?

    Text Solution

    |

  18. Consider the following statements: 1 f(theta) =2 has no solution 2...

    Text Solution

    |

  19. Consider the equaiton k sinx + cos 2x=2k-7 If the equaiton possesses...

    Text Solution

    |

  20. If the equaiton posses soluiton then what is the maximum value of k ?

    Text Solution

    |