Home
Class 14
MATHS
3sqrt(42875)-?=21...

`3sqrt(42875)-?=21`

A

18

B

13

C

15

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3\sqrt{42875} - ? = 21 \), we will follow these steps: 1. **Identify the expression**: We need to isolate the question mark \( ? \) in the equation. The equation can be rewritten as: \[ 3\sqrt{42875} - ? = 21 \] 2. **Isolate the question mark**: We can rearrange the equation to solve for \( ? \): \[ ? = 3\sqrt{42875} - 21 \] 3. **Calculate \( \sqrt{42875} \)**: Next, we need to find the value of \( \sqrt{42875} \). We can simplify \( 42875 \) by factoring it: - First, we can divide \( 42875 \) by \( 25 \) (since it ends in 75): \[ 42875 \div 25 = 1715 \] - Next, we can divide \( 1715 \) by \( 5 \): \[ 1715 \div 5 = 343 \] - Now, we can factor \( 343 \) as \( 7^3 \): \[ 343 = 7 \times 7 \times 7 \] - Therefore, we can express \( 42875 \) as: \[ 42875 = 25 \times 5 \times 343 = 25 \times 5 \times 7^3 \] 4. **Calculate \( \sqrt{42875} \)**: Now we can find \( \sqrt{42875} \): \[ \sqrt{42875} = \sqrt{25 \times 5 \times 343} = \sqrt{25} \times \sqrt{5} \times \sqrt{343} = 5 \times \sqrt{5} \times 7 = 35\sqrt{5} \] 5. **Substitute back into the equation**: Now we substitute \( \sqrt{42875} \) back into the equation: \[ ? = 3(35\sqrt{5}) - 21 \] \[ ? = 105\sqrt{5} - 21 \] 6. **Final calculation**: The value of \( ? \) is: \[ ? = 105\sqrt{5} - 21 \] Thus, the value of \( ? \) is \( 105\sqrt{5} - 21 \).

To solve the equation \( 3\sqrt{42875} - ? = 21 \), we will follow these steps: 1. **Identify the expression**: We need to isolate the question mark \( ? \) in the equation. The equation can be rewritten as: \[ 3\sqrt{42875} - ? = 21 \] 2. **Isolate the question mark**: We can rearrange the equation to solve for \( ? \): ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

The sum of the real roots of the equation 2x-3=sqrt(2x^(2)-2x+21) is

The foci of the hyperbola 3(y-1)^2-4(x-2)^2=12 are (0,sqrt(7)) b. (-2,1-sqrt(7)) c. 2,1-sqrt(7) d. (0)-sqrt(7)

The approximate value of (3sqrt(12))/(2sqrt(28))-:(2sqrt(21))/(sqrt(98)) is (a) 1.0605 (b) 1.0727 (c) 1.6007 (d) 1.6026

Find the domain of sqrt(10-sqrt(x^(4)-21x^(2)))

Find the modulus and argument of each of the following complex number: 2sqrt(3)-21

A=(1,3,-2) is a vertex of triangle ABC whose centroid is G=(-1,4,2) then length of median through A is sqrt(21) 3sqrt(21) sqrt(21)/2 (3sqrt(21))/(2)