Home
Class 14
MATHS
32000xx(3)/(4)xx?xx(1)/(2)=4800...

`32000xx(3)/(4)xx?xx(1)/(2)=4800`

A

`2/3`

B

`3/5`

C

`2/5`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 32000 \times \frac{3}{4} \times ? \times \frac{1}{2} = 4800 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 32000 \times \frac{3}{4} \times ? \times \frac{1}{2} = 4800 \] ### Step 2: Simplify the left side First, we can simplify the left side by multiplying \( \frac{3}{4} \) and \( \frac{1}{2} \): \[ \frac{3}{4} \times \frac{1}{2} = \frac{3 \times 1}{4 \times 2} = \frac{3}{8} \] So the equation becomes: \[ 32000 \times ? \times \frac{3}{8} = 4800 \] ### Step 3: Isolate the question mark To isolate the question mark, we can multiply both sides by \( \frac{8}{3} \): \[ 32000 \times ? = 4800 \times \frac{8}{3} \] ### Step 4: Calculate the right side Now we calculate \( 4800 \times \frac{8}{3} \): \[ 4800 \times \frac{8}{3} = \frac{4800 \times 8}{3} = \frac{38400}{3} = 12800 \] So now we have: \[ 32000 \times ? = 12800 \] ### Step 5: Solve for ? Now we can solve for \( ? \) by dividing both sides by 32000: \[ ? = \frac{12800}{32000} \] ### Step 6: Simplify the fraction We can simplify \( \frac{12800}{32000} \): \[ ? = \frac{128}{320} = \frac{128 \div 16}{320 \div 16} = \frac{8}{20} = \frac{2}{5} \] ### Final Answer Thus, the value of \( ? \) is: \[ ? = \frac{2}{5} \] ---

To solve the equation \( 32000 \times \frac{3}{4} \times ? \times \frac{1}{2} = 4800 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 32000 \times \frac{3}{4} \times ? \times \frac{1}{2} = 4800 \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

Find the sum (3)/(1xx2)xx(1)/(2)+(4)/(2xx3)xx((1)/(2))^(2)+(5)/(3xx4)xx((1)/(2))^(2)+... to n terms.

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Prove that: ,,3^((1)/(2))xx3^((1)/(4))xx3^((1)/(8))xx...=3

Find the no. of zeros in experssion : 1^(2) xx 2^(2) xx 3^(3) xx 4^(4) xx ……..xx100^(100)

[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+,+(1)/(99xx100)]=

Evaluate (-1)/3 xx (1/2+1/4)xx((-1)/3 xx 1/2)+((-1)/3 xx 1/4)

If .^(n)P_(r) = 720 and .^(n)C_(r) = 120 , then find r. = (5 xx 4 xx 3)/(3 xx 2 xx1) xx (4xx 3 xx 2)/(3 xx 2xx1) = 10 xx 4 = 40 .