Home
Class 14
MATHS
sqrt(?)+22=sqrt(2601)...

`sqrt(?)+22=sqrt(2601)`

A

`sqrt(841)`

B

`(841)^(2)`

C

`sqrt(22)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{?} + 22 = \sqrt{2601} \), we will follow these steps: ### Step 1: Rewrite the equation Let \( ? = X \). Therefore, we can rewrite the equation as: \[ \sqrt{X} + 22 = \sqrt{2601} \] ### Step 2: Calculate \( \sqrt{2601} \) Next, we need to find the value of \( \sqrt{2601} \). We can check if 2601 is a perfect square: \[ 2601 = 51 \times 51 \] Thus, \[ \sqrt{2601} = 51 \] ### Step 3: Substitute back into the equation Now we substitute \( \sqrt{2601} \) back into the equation: \[ \sqrt{X} + 22 = 51 \] ### Step 4: Isolate \( \sqrt{X} \) To isolate \( \sqrt{X} \), we subtract 22 from both sides: \[ \sqrt{X} = 51 - 22 \] Calculating the right side gives: \[ \sqrt{X} = 29 \] ### Step 5: Square both sides To find \( X \), we square both sides of the equation: \[ X = 29^2 \] Calculating \( 29^2 \): \[ X = 841 \] ### Final Answer Thus, the value of \( ? \) is: \[ \boxed{841} \] ---

To solve the equation \( \sqrt{?} + 22 = \sqrt{2601} \), we will follow these steps: ### Step 1: Rewrite the equation Let \( ? = X \). Therefore, we can rewrite the equation as: \[ \sqrt{X} + 22 = \sqrt{2601} \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

sqrt(?)+14=sqrt(2601)(a)1521(b)1369(c)1225 (d) 961

sqrt(33124)xxsqrt(2601)-(83)^(2)=(?)^(2)+(37)^(2)

Find the sqrt(2601)

Which of the following surd is the smallest ? sqrt(10)-sqrt(5),sqrt(19)-sqrt(14),sqrt(22)-sqrt(17) and sqrt(8)-sqrt(3)

sqrt(11)+sqrt(3),sqrt(20),sqrt(5)sqrt(15)+sqrt(22),sqrt(25),sqrt(10)3+sqrt(55),sqrt(15),sqrt(25)]|=

The series sqrt(3), sqrt(12), sqrt(27),srt(48)……..,22sqrt(3) have

An irrational number between 2 and 2.5 is sqrt(11) (b) sqrt(5) (c) sqrt(22.5) (d) sqrt(12.5)

(sqrt(12)+sqrt(5)+sqrt(3))/(sqrt(12)-sqrt(5)-sqrt(3))+(sqrt(20)+sqrt(5)+sqrt(3))/(sqrt(20)-sqrt(5)-sqrt(3))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))