Home
Class 14
MATHS
sqrt(?)-11=sqrt(1764)...

`sqrt(?)-11=sqrt(1764)`

A

`sqrt(2809)`

B

`(53)^(2)`

C

`sqrt(53)`

D

53

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} - 11 = \sqrt{1764} \), we will follow these steps: ### Step 1: Simplify the Right Side First, we need to simplify \( \sqrt{1764} \). We can find the square root of 1764. \[ \sqrt{1764} = 42 \] ### Step 2: Rewrite the Equation Now we can rewrite the original equation using the value we found: \[ \sqrt{x} - 11 = 42 \] ### Step 3: Isolate \( \sqrt{x} \) Next, we will isolate \( \sqrt{x} \) by adding 11 to both sides of the equation: \[ \sqrt{x} = 42 + 11 \] Calculating the right side: \[ \sqrt{x} = 53 \] ### Step 4: Square Both Sides To eliminate the square root, we will square both sides of the equation: \[ x = 53^2 \] ### Step 5: Calculate \( 53^2 \) Now we need to calculate \( 53^2 \): \[ 53^2 = 53 \times 53 = 2809 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{2809} \] ---

To solve the equation \( \sqrt{x} - 11 = \sqrt{1764} \), we will follow these steps: ### Step 1: Simplify the Right Side First, we need to simplify \( \sqrt{1764} \). We can find the square root of 1764. \[ \sqrt{1764} = 42 \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

sqrt(?)-11=sqrt(1521)

Simplify the following expressions: (11+sqrt(11))(11-sqrt(11))( ii) (5+sqrt(7))(5-sqrt(7))(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2))

Simplify the following expressions: (i)(11+sqrt(11))(11-sqrt(11)) (ii) (5+sqrt(7))(5-sqrt(7)) (iii)(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2)) (iiii)(sqrt(7)-3)(sqrt(7)+3)

If sqrt(17+ xsqrt(11)) = sqrt(11) + sqrt(6) , then value of x^(2) will be:

(sqrt(4356)xxsqrt(?))/(sqrt(6084))=11

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?