Home
Class 14
MATHS
5(1)/(5)+2(2)/(15)+3(2)/(3)=?...

`5(1)/(5)+2(2)/(15)+3(2)/(3)=?`

A

15

B

13

C

`(11)/(15)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 5\frac{1}{5} + 2\frac{2}{15} + 3\frac{2}{3} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \( 5\frac{1}{5} \): \[ 5\frac{1}{5} = 5 + \frac{1}{5} = \frac{25}{5} + \frac{1}{5} = \frac{26}{5} \] 2. Convert \( 2\frac{2}{15} \): \[ 2\frac{2}{15} = 2 + \frac{2}{15} = \frac{30}{15} + \frac{2}{15} = \frac{32}{15} \] 3. Convert \( 3\frac{2}{3} \): \[ 3\frac{2}{3} = 3 + \frac{2}{3} = \frac{9}{3} + \frac{2}{3} = \frac{11}{3} \] ### Step 2: Write the Expression with Improper Fractions Now, we can rewrite the original expression: \[ \frac{26}{5} + \frac{32}{15} + \frac{11}{3} \] ### Step 3: Find the Least Common Multiple (LCM) To add these fractions, we need to find the LCM of the denominators \( 5, 15, \) and \( 3 \). The LCM is \( 15 \). ### Step 4: Convert Each Fraction to Have the Same Denominator 1. Convert \( \frac{26}{5} \) to a denominator of \( 15 \): \[ \frac{26}{5} = \frac{26 \times 3}{5 \times 3} = \frac{78}{15} \] 2. \( \frac{32}{15} \) already has a denominator of \( 15 \): \[ \frac{32}{15} = \frac{32}{15} \] 3. Convert \( \frac{11}{3} \) to a denominator of \( 15 \): \[ \frac{11}{3} = \frac{11 \times 5}{3 \times 5} = \frac{55}{15} \] ### Step 5: Add the Fractions Now we can add all the fractions: \[ \frac{78}{15} + \frac{32}{15} + \frac{55}{15} = \frac{78 + 32 + 55}{15} = \frac{165}{15} \] ### Step 6: Simplify the Result Now, simplify \( \frac{165}{15} \): \[ \frac{165}{15} = 11 \] ### Final Answer Thus, the value of the expression \( 5\frac{1}{5} + 2\frac{2}{15} + 3\frac{2}{3} \) is: \[ \boxed{11} \]

To solve the expression \( 5\frac{1}{5} + 2\frac{2}{15} + 3\frac{2}{3} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \( 5\frac{1}{5} \): \[ 5\frac{1}{5} = 5 + \frac{1}{5} = \frac{25}{5} + \frac{1}{5} = \frac{26}{5} \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :

(3)/(12) of (((2)/(5)+(4)/(15)))/(((3)/(5)-(2)/(5)))= ?

2(1.5)/(5)+2(1)/(6)-1(3.5)/(15)=(((?)^(1/3))/(4))+1(7)/(30) (a) 2(b)8(c)512(d)324(e) None of these

If the sum of first 15 terms of series ((4)/(3))^(3)+(1(3)/(5))^(3)+(2(2)/(5))^(3)+(3(1)/(5))^(3)+4^(3) is equal to (512)/(2)k then k is equal to:

If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B

A=[[(2)/(3),1,(5)/(3)(1)/(3),(2)/(3),(4)/(3)(7)/(3),2,(2)/(3)]] and B=[[(2)/(5),(3)/(5),1(1)/(5),(2)/(5),(4)/(5)(7)/(5),(6)/(5),(2)/(5)]]

Which of the following fractions lies between (2)/(3) and (3)/(5)?(2)/(5) (b) (1)/(3)(c)(1)/(15) (d) (31)/(50)