Home
Class 14
MATHS
(121)^(3)xx11 div (1331)^(2)=(11)^(?)...

`(121)^(3)xx11 div (1331)^(2)=(11)^(?)`

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((121)^3 \times 11 \div (1331)^2 = (11)^{?}\), we will simplify the left-hand side step by step. ### Step 1: Rewrite the numbers in terms of powers of 11 First, we express \(121\) and \(1331\) as powers of \(11\): - \(121 = 11^2\) - \(1331 = 11^3\) ### Step 2: Substitute the powers into the equation Now we can rewrite the equation: \[ (11^2)^3 \times 11 \div (11^3)^2 \] ### Step 3: Simplify the powers Using the power of a power property \((a^m)^n = a^{m \cdot n}\), we simplify: - \((11^2)^3 = 11^{2 \cdot 3} = 11^6\) - \((11^3)^2 = 11^{3 \cdot 2} = 11^6\) So, we can rewrite the equation as: \[ 11^6 \times 11^1 \div 11^6 \] ### Step 4: Combine the powers in the numerator Using the property \(a^m \times a^n = a^{m+n}\), we combine the powers in the numerator: \[ 11^{6 + 1} \div 11^6 = 11^7 \div 11^6 \] ### Step 5: Simplify the division Using the property \(a^m \div a^n = a^{m-n}\), we simplify: \[ 11^{7 - 6} = 11^1 \] ### Step 6: Set the equation equal to \(11^{?}\) Now we have: \[ 11^1 = 11^{?} \] This implies that \(? = 1\). ### Final Answer Thus, the value of the question mark is: \[ \boxed{1} \]

To solve the equation \((121)^3 \times 11 \div (1331)^2 = (11)^{?}\), we will simplify the left-hand side step by step. ### Step 1: Rewrite the numbers in terms of powers of 11 First, we express \(121\) and \(1331\) as powers of \(11\): - \(121 = 11^2\) - \(1331 = 11^3\) ### Step 2: Substitute the powers into the equation ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

[((1.331)^(-1)+(1.331)^(-2)+...+(1.331)^(-7))/((1.331)^(-2)+(1.331)^(-3)+...+(1.331)^(-8))]^(2/3)=

[(11)^(3)xx(6)^(2)]+(4)^(3)=?

(3/11)^(-5)xx(3/11)^3

(3)/(7) div (9)/(14)xx(6)/(11)=?

(-11)^5xx(-11)^2

The L.C.M.of 2^(3)xx3^(2)xx5xx11,backslash backslash2^(4)xx3^(4)xx5^(2)xx7 and 2^(5)xx3^(3)xx5^(3)xx7^(2)xx11 is 2^(3)xx3^(2)xx5 (b) 2^(5)xx3^(4)xx5^(3)(c)2^(3)xx3^(2)xx5xx7xx11(d)2^(5)xx3^(4)xx5^(3)xx7^(2)xx11

{sqrt(7744)xx(11)^(2)}div(2)^(3)=(?)^(3)

3(7)/(11)+7(3)/(11)xx1(1)/(2)=?

(1)/(11) of [(17424)^(1//2)div(66)^(2)xx3^(3)]=?^(2)