Home
Class 14
MATHS
(63)^(2)-(12)^(2)=?...

`(63)^(2)-(12)^(2)=?`

A

3528

B

3852

C

3582

D

3825

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (63)^2 - (12)^2 \), we can use the difference of squares formula. The difference of squares states that: \[ a^2 - b^2 = (a - b)(a + b) \] In this case, let \( a = 63 \) and \( b = 12 \). ### Step 1: Identify \( a \) and \( b \) We have: - \( a = 63 \) - \( b = 12 \) ### Step 2: Apply the difference of squares formula Using the formula, we can rewrite the expression as: \[ (63)^2 - (12)^2 = (63 - 12)(63 + 12) \] ### Step 3: Calculate \( 63 - 12 \) and \( 63 + 12 \) Now, we calculate the two parts: - \( 63 - 12 = 51 \) - \( 63 + 12 = 75 \) ### Step 4: Multiply the results Now, we multiply the results from the previous step: \[ (63)^2 - (12)^2 = 51 \times 75 \] ### Step 5: Calculate \( 51 \times 75 \) To calculate \( 51 \times 75 \), we can break it down: \[ 51 \times 75 = 51 \times (70 + 5) = 51 \times 70 + 51 \times 5 \] Calculating each part: - \( 51 \times 70 = 3570 \) - \( 51 \times 5 = 255 \) Now, add these two results together: \[ 3570 + 255 = 3825 \] ### Final Answer Thus, the value of \( (63)^2 - (12)^2 \) is: \[ \boxed{3825} \]

To solve the expression \( (63)^2 - (12)^2 \), we can use the difference of squares formula. The difference of squares states that: \[ a^2 - b^2 = (a - b)(a + b) \] In this case, let \( a = 63 \) and \( b = 12 \). ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

((3.63)^(2)-(2.37)^(2))/(3.63+2.37) is simplified to (a) 1.26 (b) 1.36(c)2.26 (d) 6

63x^(2)+5x-2

Fractorise: 63a ^(2) - 112b^(2)

((63+36)^(2)+(63-36)^(2))/(63^(2)+36^(2)) =?

([(12)^(-2)]^(2))/([(12)^(2)]^(-2))=?

What is the value of ((6.3)^(3)+(1.1)^(3))/((6.3)^(2)-6.3xx1.1+(1.1)^(2))

int_ (0)^(pi/2) cos^(9) xdx = (i) (128)/(315) (ii) (64)/(63) (iii) (32)/(63) (iv) (128)/(253)

The sides of a triangle are 7cm,9cm and 14cm .Its area is 12sqrt(5)cm^(2) (b) 12sqrt(3)cm^(2)24sqrt(5)cm^(2)(d)63cm^(2)

factors of (2x^(2)-3x-2)(2x^(2)-3x)-63 are:

(7a^(2) - 63b^(2)) = ?