Home
Class 14
MATHS
{sqrt(7744)xx(11)^(2)}div(2)^(3)=(?)^(3)...

`{sqrt(7744)xx(11)^(2)}div(2)^(3)=(?)^(3)`

A

7

B

9

C

11

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sqrt{7744} \times (11)^2}{(2)^3} = (?)^3\), we will follow these steps: ### Step 1: Calculate \(\sqrt{7744}\) First, we need to find the square root of 7744. \[ \sqrt{7744} = 88 \] ### Step 2: Calculate \((11)^2\) Next, we calculate \(11\) squared. \[ (11)^2 = 121 \] ### Step 3: Substitute the values into the equation Now we substitute the values we found into the equation: \[ \frac{88 \times 121}{(2)^3} \] ### Step 4: Calculate \((2)^3\) Now we calculate \(2\) cubed. \[ (2)^3 = 8 \] ### Step 5: Substitute and simplify Now we substitute \(8\) back into the equation: \[ \frac{88 \times 121}{8} \] ### Step 6: Calculate \(88 \times 121\) Now we calculate \(88 \times 121\): \[ 88 \times 121 = 10648 \] ### Step 7: Divide by \(8\) Now we divide \(10648\) by \(8\): \[ \frac{10648}{8} = 1331 \] ### Step 8: Set the equation equal to \(x^3\) Now we have: \[ 1331 = x^3 \] ### Step 9: Find \(x\) To find \(x\), we take the cube root of \(1331\): \[ x = \sqrt[3]{1331} = 11 \] ### Final Answer Thus, the value of \(x\) (or the question mark) is: \[ \boxed{11} \] ---

To solve the equation \(\frac{\sqrt{7744} \times (11)^2}{(2)^3} = (?)^3\), we will follow these steps: ### Step 1: Calculate \(\sqrt{7744}\) First, we need to find the square root of 7744. \[ \sqrt{7744} = 88 ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

(1)/(11) of [(17424)^(1//2)div(66)^(2)xx3^(3)]=?^(2)

(121)^(3)xx11 div (1331)^(2)=(11)^(?)

3sqrt(162)xx(303div8)=(?)^(2)

Find (4)/(7) xx (14)/(3) div (2)/(3)

(4356)^(1//2)div(11)/(4)=sqrt(?)xx6

sqrt(15^(2)+11xx3^(2))=?

(3)/(7) div (9)/(14)xx(6)/(11)=?

sqrt(1521)div3xx12=?

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :