Home
Class 14
MATHS
(3(6)/(17)div2(7)/(34)-1(9)/(25))=(?)^(2...

`(3(6)/(17)div2(7)/(34)-1(9)/(25))=(?)^(2)`

A

`2/5`

B

`1/3`

C

`4/5`

D

1/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\frac{36}{17} \div \frac{27}{34} - \frac{19}{25}) = (?)^2\), we will follow these steps: ### Step 1: Rewrite the division as multiplication We can rewrite the division of fractions as multiplication by the reciprocal. Therefore, we have: \[ \frac{36}{17} \div \frac{27}{34} = \frac{36}{17} \times \frac{34}{27} \] ### Step 2: Multiply the fractions Now we can multiply the fractions: \[ \frac{36 \times 34}{17 \times 27} \] ### Step 3: Simplify the multiplication Calculating the numerator and denominator: - Numerator: \(36 \times 34 = 1224\) - Denominator: \(17 \times 27 = 459\) So we have: \[ \frac{1224}{459} \] ### Step 4: Simplify the fraction Now we simplify \(\frac{1224}{459}\). We can find the greatest common divisor (GCD) of 1224 and 459. The GCD is 51. Dividing both the numerator and denominator by 51 gives: \[ \frac{1224 \div 51}{459 \div 51} = \frac{24}{9} = \frac{8}{3} \] ### Step 5: Subtract the second fraction Now we need to subtract \(\frac{19}{25}\) from \(\frac{8}{3}\). To do this, we need a common denominator. The least common multiple (LCM) of 3 and 25 is 75. We convert both fractions: \[ \frac{8}{3} = \frac{8 \times 25}{3 \times 25} = \frac{200}{75} \] \[ \frac{19}{25} = \frac{19 \times 3}{25 \times 3} = \frac{57}{75} \] Now we can subtract: \[ \frac{200}{75} - \frac{57}{75} = \frac{200 - 57}{75} = \frac{143}{75} \] ### Step 6: Set up the equation Now we have: \[ \frac{143}{75} = x^2 \] ### Step 7: Solve for x To find \(x\), we take the square root of both sides: \[ x = \sqrt{\frac{143}{75}} = \frac{\sqrt{143}}{\sqrt{75}} = \frac{\sqrt{143}}{5\sqrt{3}} = \frac{\sqrt{143}}{5\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{429}}{15} \] ### Final Answer Thus, the value of \(x\) is: \[ x = \frac{\sqrt{429}}{15} \]

To solve the equation \((\frac{36}{17} \div \frac{27}{34} - \frac{19}{25}) = (?)^2\), we will follow these steps: ### Step 1: Rewrite the division as multiplication We can rewrite the division of fractions as multiplication by the reciprocal. Therefore, we have: \[ \frac{36}{17} \div \frac{27}{34} = \frac{36}{17} \times \frac{34}{27} \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :

(5)/(6)div(6)/(7)xx?-(8)/(9)div1(3)/(5)+(3)/(4)xx3(1)/(3)=2(7)/(9)

What is the value of ((3)/(4) div (9)/(32) +(4)/(3) xx (2)/(3) " of "(27)/(16))/((1)/(2) xx ((8)/(2) -2) div (4)/(9) +((1)/(3)+(1)/(6))) ? (a) (10)/(3) (b) (13)/(2) (c) (25)/(2) (d) (31)/(2)

Find m, if ((3)/(7))^(9)div((3)/(7))^(5)=((3)/(7))^((3m+2)/(m-2))

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12