Home
Class 14
MATHS
((13)^(3)+7^(3))/((13)^(2)+7^(2)-?)=20...

`((13)^(3)+7^(3))/((13)^(2)+7^(2)-?)=20`

A

6

B

20

C

91

D

104

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{13^3 + 7^3}{13^2 + 7^2 - ?} = 20\), we will follow these steps: ### Step 1: Write the equation We start with the equation: \[ \frac{13^3 + 7^3}{13^2 + 7^2 - x} = 20 \] ### Step 2: Apply the formula for \(A^3 + B^3\) Recall the formula for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Here, let \(A = 13\) and \(B = 7\). Thus: \[ 13^3 + 7^3 = (13 + 7)(13^2 - 13 \cdot 7 + 7^2) \] Calculating \(13 + 7\): \[ 13 + 7 = 20 \] Now we need to calculate \(13^2\), \(7^2\), and \(13 \cdot 7\): \[ 13^2 = 169, \quad 7^2 = 49, \quad 13 \cdot 7 = 91 \] Now substitute these values into the formula: \[ 13^3 + 7^3 = 20(169 - 91 + 49) = 20(127) \] Thus: \[ 13^3 + 7^3 = 2540 \] ### Step 3: Substitute back into the equation Now we substitute \(13^3 + 7^3\) back into the equation: \[ \frac{2540}{13^2 + 7^2 - x} = 20 \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 2540 = 20(13^2 + 7^2 - x) \] ### Step 5: Divide both sides by 20 Now divide both sides by 20: \[ \frac{2540}{20} = 13^2 + 7^2 - x \] Calculating the left side: \[ 127 = 13^2 + 7^2 - x \] ### Step 6: Substitute \(13^2 + 7^2\) We already calculated \(13^2 + 7^2\): \[ 13^2 + 7^2 = 169 + 49 = 218 \] Substituting this into the equation: \[ 127 = 218 - x \] ### Step 7: Solve for \(x\) Rearranging gives: \[ x = 218 - 127 \] Calculating the right side: \[ x = 91 \] ### Final Answer The value of \(x\) is: \[ \boxed{91} \]

To solve the equation \(\frac{13^3 + 7^3}{13^2 + 7^2 - ?} = 20\), we will follow these steps: ### Step 1: Write the equation We start with the equation: \[ \frac{13^3 + 7^3}{13^2 + 7^2 - x} = 20 \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

2 3/5-:5/7=\ (13)/7 (b) (13)/(25) (91)/(25) (d) (25)/(91)

(13^(3)times7^(0))/({(65times49)^(2/1))

[[1,0,-13,4,50,-6,-7]]=[[(1)/(10),(3)/(10),(1)/(5)(21)/(20),-(7)/(20),-(2)/(5)-(9)/(10),(3)/(10),(1)/(5)]]

(5) / (3 ^ (2) 7 ^ (2)) + (9) / (7 ^ (2) 11 ^ (2)) + (13) / (11 ^ (2) 15 ^ (2)) + .... oo

Find the sum of series :- (3)/(2)+(7)/(6)+(13)/(12)+(21)/(20)... if the no of terms is 2007.

Re-arrange suitably and find the sum in each of the following: (3)/(5)+(7)/(3)+(9)/(5)+(-13)/(15)+(-7)/(3) (ii) (4)/(13)+(-5)/(8)+(-8)/(13)+(9)/(13)

Find :(i)(7)/(3)-:2(ii)(4)/(9)-:5(iii)(6)/(13)-:7(iv) (4) (1)/(3)-:3(v)(3)(1)/(2)-:4(vi)(4)(3)/(7)-:7

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=(pi)/(2), then x is equal to (7)/(13) (b) (4)/(3)(c)13 (d) (13)/(7)

Simplify :(-3)/(10)+(7)/(15)+(3)/(-20)+(-9)/(10)+(13)/(15)+(13)/(-20)

Simplify: (-3)/(10)+(7)/(15)+(3)/(-20)+(-9)/(10)+(13)/(15)+(13)/(-20)