Home
Class 14
MATHS
3(7)/(11)+7(3)/(11)xx1(1)/(2)=?...

`3(7)/(11)+7(3)/(11)xx1(1)/(2)=?`

A

`13(10)/(11)`

B

`14(6)/(11)`

C

`14(9)/(11)`

D

`10(17)/(22)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{3 \cdot 7}{11} + \frac{7 \cdot 3}{11} \cdot 1 \frac{1}{2} \), we will break it down step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert the mixed number \( 1 \frac{1}{2} \) into an improper fraction. \[ 1 \frac{1}{2} = \frac{2 \cdot 1 + 1}{2} = \frac{3}{2} \] **Hint:** To convert a mixed number to an improper fraction, multiply the whole number by the denominator, add the numerator, and place that over the denominator. ### Step 2: Rewrite the Expression Now, we can rewrite the original expression using the improper fraction: \[ \frac{3 \cdot 7}{11} + \frac{7 \cdot 3}{11} \cdot \frac{3}{2} \] ### Step 3: Simplify Each Term Next, we simplify each term. The first term is: \[ \frac{3 \cdot 7}{11} = \frac{21}{11} \] The second term can be simplified as follows: \[ \frac{7 \cdot 3}{11} \cdot \frac{3}{2} = \frac{21}{11} \cdot \frac{3}{2} = \frac{21 \cdot 3}{11 \cdot 2} = \frac{63}{22} \] **Hint:** When multiplying fractions, multiply the numerators together and the denominators together. ### Step 4: Find a Common Denominator To add the two fractions \( \frac{21}{11} \) and \( \frac{63}{22} \), we need a common denominator. The least common multiple of 11 and 22 is 22. Convert \( \frac{21}{11} \) to a fraction with a denominator of 22: \[ \frac{21}{11} = \frac{21 \cdot 2}{11 \cdot 2} = \frac{42}{22} \] ### Step 5: Add the Two Fractions Now we can add the two fractions: \[ \frac{42}{22} + \frac{63}{22} = \frac{42 + 63}{22} = \frac{105}{22} \] ### Step 6: Simplify the Result The fraction \( \frac{105}{22} \) cannot be simplified further, so we can leave it as is or convert it to a mixed number if needed: \[ \frac{105}{22} = 4 \frac{17}{22} \] ### Final Answer Thus, the final answer is: \[ \frac{105}{22} \text{ or } 4 \frac{17}{22} \] ---

To solve the expression \( \frac{3 \cdot 7}{11} + \frac{7 \cdot 3}{11} \cdot 1 \frac{1}{2} \), we will break it down step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert the mixed number \( 1 \frac{1}{2} \) into an improper fraction. \[ 1 \frac{1}{2} = \frac{2 \cdot 1 + 1}{2} = \frac{3}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

(7)/(11)-"[1 (1)/(2)-[(1)/(2)+(1(3)/(4)-(1)/(2)+(1)/(3))]]

7(1)/(2)-((8)/(11)xx7(1)/(3))-:(3(1)/(2)-2(1)/(4))

5(17)/(37)xx4(51)/(52)xx11(1)/(7)+2(3)/(4)=?

Verify the following: (i) ((3)/(4)+(-2)/(5))+(-7)/(10)=(3)/(4)+((-2)/(5)+(-7)/(10)) (ii) ((-7)/(11)+(2)/(-5))+(-13)/(22)=(-7)/(11)+((2)/(-5)+(-13)/(22)) (iii) -1+((-2)/(3)+(-3)/(4))=(-1+(-2)/(3))+(-3)/(4)

Name the property used in the following. (-7)/(11)xx(-3)/(5)=(-3)/5xx(-7)/(11)

The sum of (7)/(2xx3)((1)/(3))+(9)/(3xx4)((1)/(3))^(2)+(11)/(4xx5)((1)/(3))^(3)+ upto 10 terms is equal to

The value of (5^((1)/(4))-: (3)/(7)"of"(1)/(2)) -: (5(1)/(9)-7(7)/(8)-: 9 (9)/(20)) xx(11)/(21)+ (2-: 2 "of" (1)/(2)) is :

Prove the following by the principle of mathematical induction: (1)/(3.7)+(1)/(7.11)+(1)/(11.15)++(1)/((4n-1)(4n+3))=(n)/(3(4n+3))