Home
Class 14
MATHS
sqrt(7921)xxsqrt(5329)-(78)^(2)=sqrt(?)+...

`sqrt(7921)xxsqrt(5329)-(78)^(2)=sqrt(?)+(19)^(2)`

A

2604

B

2704

C

2764

D

2844

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{7921} \times \sqrt{5329} - (78)^2 = \sqrt{?} + (19)^2 \), we will follow these steps: ### Step 1: Calculate \( \sqrt{7921} \) First, we find the square root of 7921. \[ \sqrt{7921} = 89 \] **Hint:** To find the square root, check if the number is a perfect square by testing integers. ### Step 2: Calculate \( \sqrt{5329} \) Next, we find the square root of 5329. \[ \sqrt{5329} = 73 \] **Hint:** Similar to step 1, check for perfect squares by testing integers. ### Step 3: Calculate \( (78)^2 \) Now, we compute \( (78)^2 \). \[ (78)^2 = 6084 \] **Hint:** Squaring a number means multiplying it by itself. ### Step 4: Calculate \( (19)^2 \) Next, we calculate \( (19)^2 \). \[ (19)^2 = 361 \] **Hint:** Again, squaring involves multiplying the number by itself. ### Step 5: Substitute and simplify the equation Now we substitute the values we calculated into the equation: \[ 89 \times 73 - 6084 = \sqrt{?} + 361 \] ### Step 6: Calculate \( 89 \times 73 \) Now we calculate \( 89 \times 73 \): \[ 89 \times 73 = 6497 \] **Hint:** Use the multiplication method or break it down into smaller parts for easier calculation. ### Step 7: Substitute and simplify further Now we substitute this back into the equation: \[ 6497 - 6084 = \sqrt{?} + 361 \] ### Step 8: Calculate \( 6497 - 6084 \) Now we perform the subtraction: \[ 6497 - 6084 = 413 \] **Hint:** Subtract the smaller number from the larger number directly. ### Step 9: Set up the equation for \( \sqrt{?} \) Now we have: \[ 413 = \sqrt{?} + 361 \] ### Step 10: Isolate \( \sqrt{?} \) To isolate \( \sqrt{?} \), we subtract 361 from both sides: \[ \sqrt{?} = 413 - 361 \] ### Step 11: Calculate \( 413 - 361 \) Now we perform the subtraction: \[ 413 - 361 = 52 \] **Hint:** Again, subtract the smaller number from the larger number. ### Step 12: Square both sides to find \( ? \) Now we square both sides to find \( ? \): \[ ? = 52^2 \] Calculating \( 52^2 \): \[ 52^2 = 2704 \] ### Final Answer Thus, the value of \( ? \) is: \[ \boxed{2704} \]

To solve the equation \( \sqrt{7921} \times \sqrt{5329} - (78)^2 = \sqrt{?} + (19)^2 \), we will follow these steps: ### Step 1: Calculate \( \sqrt{7921} \) First, we find the square root of 7921. \[ \sqrt{7921} = 89 \] **Hint:** To find the square root, check if the number is a perfect square by testing integers. ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

sqrt(11449)xxsqrt(6241)-(54)^(2)=sqrt(?)+(74)^(2)

sqrt(512)xxsqrt(1250)

sqrt(33124)xxsqrt(2601)-(83)^(2)=(?)^(2)+(37)^(2)

sqrt(11449)xxsqrt(6241)-54^(2)=?+74^(2)

sqrt(26)xxsqrt(6.24)xxsqrt(102)=?

(sqrt(2498)xxsqrt(625))/(sqrt(99))=?

[(5sqrt(7)+sqrt(7))+)4sqrt(7)+8sqrt(7))]-(19)^(2)=?