Home
Class 14
MATHS
(562.5xx6)^(6)div(135div9)^(10)div (37.5...

`(562.5xx6)^(6)div(135div9)^(10)div (37.5xx6)^(7)=(3.75xx4)^(?-6)`

A

0

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (562.5 \times 6)^{6} \div (135 \div 9)^{10} \div (37.5 \times 6)^{7} = (3.75 \times 4)^{? - 6} \] we will follow these steps: ### Step 1: Simplify the left-hand side First, we simplify \( 135 \div 9 \): \[ 135 \div 9 = 15 \] So the equation becomes: \[ (562.5 \times 6)^{6} \div 15^{10} \div (37.5 \times 6)^{7} \] ### Step 2: Calculate \( 562.5 \times 6 \) Next, we calculate \( 562.5 \times 6 \): \[ 562.5 \times 6 = 3375 \] Now, we can rewrite the equation: \[ (3375)^{6} \div 15^{10} \div (37.5 \times 6)^{7} \] ### Step 3: Calculate \( 37.5 \times 6 \) Now, we calculate \( 37.5 \times 6 \): \[ 37.5 \times 6 = 225 \] So the equation now looks like: \[ (3375)^{6} \div 15^{10} \div (225)^{7} \] ### Step 4: Rewrite \( 3375 \) and \( 225 \) Next, we can express \( 3375 \) and \( 225 \) in terms of \( 15 \): \[ 3375 = 15^{3} \quad \text{(since } 15^3 = 3375\text{)} \] \[ 225 = 15^{2} \quad \text{(since } 15^2 = 225\text{)} \] Now substituting these values back into the equation: \[ (15^{3})^{6} \div 15^{10} \div (15^{2})^{7} \] ### Step 5: Simplify the powers Now we simplify the powers: \[ 15^{18} \div 15^{10} \div 15^{14} \] This can be simplified using the property of exponents: \[ 15^{18 - 10 - 14} = 15^{18 - 24} = 15^{-6} \] ### Step 6: Set the equation equal to the right-hand side Now we have: \[ 15^{-6} = (3.75 \times 4)^{? - 6} \] ### Step 7: Calculate \( 3.75 \times 4 \) Now we calculate \( 3.75 \times 4 \): \[ 3.75 \times 4 = 15 \] So we rewrite the equation: \[ 15^{-6} = 15^{? - 6} \] ### Step 8: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ -6 = ? - 6 \] ### Step 9: Solve for \( ? \) Now, we solve for \( ? \): \[ ? = -6 + 6 = 0 \] ### Final Answer Thus, the value of \( ? \) is: \[ \boxed{0} \] ---

To solve the equation \[ (562.5 \times 6)^{6} \div (135 \div 9)^{10} \div (37.5 \times 6)^{7} = (3.75 \times 4)^{? - 6} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

(216)^(4)div(36)^(4)xx(6)^(5)=(6)^(?)

(6xx6xx6xx6xx6xx6)^(4)xx(6xx6xx6xx6)^(5) div (6xx6)^(7)=(36)^(?)

(6xx5)^(2)div3+300xx10=?

What is the value of [(6.5)^(3)+(4.7)^(3)]div[(6.5)^(2)-6.5xx4.7+(4.7)^(2)]?

(1)/(5)xx(5)/(7)div (6)/(7)=?

(3)/(7) div (9)/(14)xx(6)/(11)=?

(2)/(7)div(4)/(5)xx(7)/(9)xx9div5=?

(5)/(6)div(6)/(7)xx?-(8)/(9)div1(3)/(5)+(3)/(4)xx3(1)/(3)=2(7)/(9)

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :