Home
Class 14
MATHS
(13+2sqrt(5))^(2)=?sqrt(5)+189...

`(13+2sqrt(5))^(2)=?sqrt(5)+189`

A

26

B

25

C

52

D

130

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((13 + 2\sqrt{5})^2 = ?\sqrt{5} + 189\), we will follow these steps: ### Step 1: Expand the left side We start by expanding the left side of the equation using the formula for the square of a binomial, \((a + b)^2 = a^2 + 2ab + b^2\). Here, \(a = 13\) and \(b = 2\sqrt{5}\). \[ (13 + 2\sqrt{5})^2 = 13^2 + 2 \cdot 13 \cdot (2\sqrt{5}) + (2\sqrt{5})^2 \] Calculating each term: - \(13^2 = 169\) - \(2 \cdot 13 \cdot (2\sqrt{5}) = 52\sqrt{5}\) - \((2\sqrt{5})^2 = 4 \cdot 5 = 20\) Putting it all together: \[ (13 + 2\sqrt{5})^2 = 169 + 52\sqrt{5} + 20 \] ### Step 2: Combine like terms Now, we combine the constant terms: \[ 169 + 20 = 189 \] So, we have: \[ (13 + 2\sqrt{5})^2 = 189 + 52\sqrt{5} \] ### Step 3: Set the equation Now we can set the equation: \[ 189 + 52\sqrt{5} = ?\sqrt{5} + 189 \] ### Step 4: Isolate the terms with \(\sqrt{5}\) Subtract \(189\) from both sides: \[ 52\sqrt{5} = ?\sqrt{5} \] ### Step 5: Solve for the question mark Since both sides have \(\sqrt{5}\), we can equate the coefficients: \[ ? = 52 \] ### Final Answer Thus, the value of the question mark is: \[ \boxed{52} \] ---

To solve the equation \((13 + 2\sqrt{5})^2 = ?\sqrt{5} + 189\), we will follow these steps: ### Step 1: Expand the left side We start by expanding the left side of the equation using the formula for the square of a binomial, \((a + b)^2 = a^2 + 2ab + b^2\). Here, \(a = 13\) and \(b = 2\sqrt{5}\). \[ ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

The following are the steps involved in finding the value of x-y from (sqrt(8)-sqrt(5))/(sqrt(8)+sqrt(5))=x-ysqrt(40) . Arrange them in sequential order. (A) (13-2sqrt(40))/(8-5)=x-ysqrt(40) (B) ((sqrt(8))^(2)+(sqrt(5))^(2)-2(sqrt(8))(sqrt(5)))/((sqrt(8))^(2)-(sqrt(5))^(2))=x-ysqrt(40) (C) x-y=(11)/(3) (D) x=(13)/(3) and y=(2)/(3) (E) ((sqrt(8)-sqrt(5))(sqrt(8)-sqrt(5)))/((sqrt(8)+sqrt(5))(sqrt(8)-sqrt(5)))=x-ysqrt(40)

sin[(1)/(2)cot^(-1)((2)/(3))]= sqrt((sqrt(13)-2)/(2sqrt(13))) (2+sqrt(13))/(2sqrt(13)) sqrt((2-sqrt(13))/(2sqrt(13))) (2-sqrt(13))/(2sqrt(13))

Find the values of a and b in each of the following : (a)(5+2sqrt3)/(7+4sqrt(3))=a-6sqrt(3)" "(b)(3-sqrt(5))/(3+2sqrt(5))=asqrt(5)-(19)/(11) (c )(sqrt(2)+sqrt(3))/(3sqrt2-2sqrt(3))=2-bsqrt(6)" "(d)(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7)/(11)sqrt(5b)

(2 + sqrt5)/(2 - sqrt5)

(sqrt(5)-2)(sqrt(3)-sqrt(5))

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The simplest rationalising factor of 2sqrt(5)-sqrt(3) is 2sqrt(5)+3( b) 2sqrt(5)+sqrt(3)(c)sqrt(5)+sqrt(3) (d) sqrt(5)-sqrt(3)

If G is the centroid of triangle ABC and BC=3,CA=4 AB=5 then BG= (sqrt(13))/(3) (2sqrt(13))/(3) sqrt(13) (4sqrt(13))/(3)

If a=(2+sqrt(5))/(2-sqrt(5)) and b=(2-sqrt(5))/(2+sqrt(5)) then find value of a+b and b=(2-sqrt(5))/(2+sqrt(5)) then find

x=sqrt(2+sqrt(5))+sqrt(2-sqrt(5)) and y=sqrt(2+sqrt(5))-sqrt(2-sqrt(5)) then evaluate x^(2)+y^(2)