Home
Class 14
MATHS
(sqrt(9))^(2)xx(sqrt(81))^(5)div(27)^(2)...

`(sqrt(9))^(2)xx(sqrt(81))^(5)div(27)^(2)=9^(?)`

A

3

B

5

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{9})^{2} \times (\sqrt{81})^{5} \div (27)^{2} = 9^{?}\), we will simplify each part step by step. ### Step 1: Simplify \((\sqrt{9})^{2}\) \[ \sqrt{9} = 3 \] Thus, \[ (\sqrt{9})^{2} = 3^{2} = 9 \] **Hint:** Remember that the square root of a number squared returns the original number. ### Step 2: Simplify \((\sqrt{81})^{5}\) \[ \sqrt{81} = 9 \] Thus, \[ (\sqrt{81})^{5} = 9^{5} \] **Hint:** The square root of a perfect square gives you the base of that square. ### Step 3: Simplify \((27)^{2}\) \[ 27 = 3^{3} \quad \text{(since } 3 \times 3 \times 3 = 27\text{)} \] Thus, \[ (27)^{2} = (3^{3})^{2} = 3^{6} \] **Hint:** When raising a power to another power, multiply the exponents. ### Step 4: Combine the terms Now we can rewrite the original expression using our simplifications: \[ 9 \times 9^{5} \div 3^{6} \] This can be expressed as: \[ 9^{1} \times 9^{5} \div 3^{6} \] **Hint:** When multiplying like bases, add the exponents. ### Step 5: Combine the powers of 9 \[ 9^{1 + 5} = 9^{6} \] **Hint:** Adding exponents is a key property of exponents when multiplying. ### Step 6: Convert \(9^{6}\) to base 3 Since \(9 = 3^{2}\), we can write: \[ 9^{6} = (3^{2})^{6} = 3^{12} \] **Hint:** Changing the base involves multiplying the exponents. ### Step 7: Set the equation equal to \(9^{?}\) Now we have: \[ 3^{12} = 9^{?} \] Since \(9 = 3^{2}\), we can express \(9^{?}\) as: \[ 9^{?} = (3^{2})^{?} = 3^{2?} \] ### Step 8: Equate the exponents Setting the exponents equal gives us: \[ 12 = 2? \] ### Step 9: Solve for \(?\) Dividing both sides by 2: \[ ? = \frac{12}{2} = 6 \] Thus, the final answer is: \[ 9^{6} \] ### Final Answer: \[ ? = 6 \]

To solve the equation \((\sqrt{9})^{2} \times (\sqrt{81})^{5} \div (27)^{2} = 9^{?}\), we will simplify each part step by step. ### Step 1: Simplify \((\sqrt{9})^{2}\) \[ \sqrt{9} = 3 \] Thus, \[ ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

sqrt(3^(2)sqrt(9^(2)sqrt((81)^(2)sqrt(16)^(16)))) =______.

(5sqrt(2)xx7sqrt(7))/(3sqrt(27)xx sqrt(125))=

(1)/(4)xx sqrt ([(12.1)^(2)-(8.1)^(2)] div [(0.25)^(2)+(0.25)(19.95)]) .

9^(3)xx(81)^(2)-:(27)^(3)=(3)^(?)3 b.4c.5d.6

sqrt(9) times sqrt(9)=

.^(2)sqrt((81)^(2.5)) = _______

(5)/(8)xx2(3)/(5) div (4)/(9)=?

81^(2.5)xx9^(4.5)/3^(4.8)=9^(?)