Home
Class 14
MATHS
2sqrt(2)xx3sqrt(3)xx5sqrt(2)xx9sqrt(3)=?...

`2sqrt(2)xx3sqrt(3)xx5sqrt(2)xx9sqrt(3)=?`

A

1874

B

1340

C

1620

D

2140

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2\sqrt{2} \times 3\sqrt{3} \times 5\sqrt{2} \times 9\sqrt{3} \), we can follow these steps: ### Step 1: Group the terms We can group the terms with the same square roots together: \[ (2\sqrt{2} \times 5\sqrt{2}) \times (3\sqrt{3} \times 9\sqrt{3}) \] ### Step 2: Simplify each group Now, let's simplify each group separately. **For the first group:** \[ 2\sqrt{2} \times 5\sqrt{2} = (2 \times 5)(\sqrt{2} \times \sqrt{2}) = 10 \times 2 = 20 \] **For the second group:** \[ 3\sqrt{3} \times 9\sqrt{3} = (3 \times 9)(\sqrt{3} \times \sqrt{3}) = 27 \times 3 = 81 \] ### Step 3: Multiply the results of the groups Now we multiply the results from both groups: \[ 20 \times 81 \] ### Step 4: Calculate the final result Calculating \( 20 \times 81 \): \[ 20 \times 81 = 1620 \] Thus, the final answer is: \[ \boxed{1620} \]

To solve the expression \( 2\sqrt{2} \times 3\sqrt{3} \times 5\sqrt{2} \times 9\sqrt{3} \), we can follow these steps: ### Step 1: Group the terms We can group the terms with the same square roots together: \[ (2\sqrt{2} \times 5\sqrt{2}) \times (3\sqrt{3} \times 9\sqrt{3}) \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

sqrt(2)xx sqrt(3)

(5sqrt(2)xx7sqrt(7))/(3sqrt(27)xx sqrt(125))=

sqrt(2)xx sqrt(3+sqrt(2)+sqrt(3))-1-sqrt(2)-sqrt(3)

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))xx(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1)) is equal to 3sqrt(2)(b)(sqrt(2))/(3) (c) (2)/(3) (d) (1)/(3)

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

A=(1)/(sqrt(5)-sqrt(3)),B=(1)/(sqrt(5)+sqrt(3))=then_(A xx B)

Find the value of sqrt(18)+sqrt(12) , if sqrt(12)=1.414 and sqrt(3)=1.732 . The following are the steps involved in solving the above problem. Arrange that in sequential order. (A) 4.242+3.464=7.706 (B) 3sqrt(2)+2sqrt(3) (C) sqrt(18)+sqrt(12)=sqrt(3^(2)xx2)+sqrt(2^(2)xx3) (D) 3(1.414)+2(1.732)

The simplest rationalising factor of 2sqrt(5)-sqrt(3) is 2sqrt(5)+3( b) 2sqrt(5)+sqrt(3)(c)sqrt(5)+sqrt(3) (d) sqrt(5)-sqrt(3)

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=