Home
Class 14
MATHS
(270)/(?)=19xx2-2^(3)...

`(270)/(?)=19xx2-2^(3)`

A

9

B

5

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{270}{?} = 19xx2 - 2^3\), we will follow these steps: ### Step 1: Simplify the right side of the equation First, we need to interpret \(19xx2\). Assuming \(xx\) represents the digits \(82\), we rewrite it as \(1982\). Now we have: \[ \frac{270}{?} = 1982 - 2^3 \] ### Step 2: Calculate \(2^3\) Next, we calculate \(2^3\): \[ 2^3 = 8 \] ### Step 3: Substitute \(2^3\) back into the equation Now, substitute \(8\) back into the equation: \[ \frac{270}{?} = 1982 - 8 \] ### Step 4: Perform the subtraction Now, we perform the subtraction: \[ 1982 - 8 = 1974 \] ### Step 5: Rewrite the equation Now our equation looks like this: \[ \frac{270}{?} = 1974 \] ### Step 6: Cross-multiply to solve for \(?\) To find \(?\), we cross-multiply: \[ 270 = 1974 \times ? \] ### Step 7: Isolate \(?\) Now, isolate \(?\): \[ ? = \frac{270}{1974} \] ### Step 8: Simplify the fraction Now we simplify \(\frac{270}{1974}\). We can divide both the numerator and the denominator by their greatest common divisor (GCD). Calculating the GCD, we find that both numbers can be divided by 6: \[ \frac{270 \div 6}{1974 \div 6} = \frac{45}{329} \] ### Final Answer Thus, the value of \(?\) is: \[ ? = \frac{45}{329} \] ---

To solve the equation \(\frac{270}{?} = 19xx2 - 2^3\), we will follow these steps: ### Step 1: Simplify the right side of the equation First, we need to interpret \(19xx2\). Assuming \(xx\) represents the digits \(82\), we rewrite it as \(1982\). Now we have: \[ \frac{270}{?} = 1982 - 2^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d in R^(+) such that a+b+c=18 then the maximum value of a^(2)b^(3)c^(4) is equal to 2^(18)xx3^(2)2^(18)xx3^(3)2^(19)xx3^(2)2^(18)xx3^(3)

The value of x in -19xx(4+(-2))=-19xx4+(-19)xx X is

(-18)[36 -: {7-(-2)}] -: (-4){19-(-3)xx(-5)} = ?

Prove that: "cosec"(270^(@)-A)"cosec"(270^(@)+A)+cot(270^(@)-A)cot(270^(@)+A)=1

(sin(270^(@)+x)cos^(3)(720^(@)-x)-sin(270^(@)-x)sin^(3)(540^(@)+x))/(sin(90^(@)+x)sin(-x)-cos^(2)(180^(@)-x))+(cot(270^(@)-x))/(cos e)c^(2)(450^(@)+x)

2sin 60^(@)-cos180^(@)+(1//3)sin270^(@)= A) sqrt2+(3)/(2) B) sqrt3+(2)/(3) C) sqrt2-(3)/(2) D) sqrt3-(2)/(3)

Let S=(4)/(19)+(44)/((19)^(2))+(444)/((19)^(3))+...oo then find the value of S

Name the property under multiplication used in each of the following.(i) (-4)/(5)xx1=1xx(-4)/(5) (ii) (13)/(17)xx(-2)/(7)=(-2)/(7)xx(-13)/(17) (iii) (-19)/(29)xx(29)/(-19)=