Home
Class 14
MATHS
3sqrt(512)+2(2)/(5)div x=sqrt(25xx16)...

`3sqrt(512)+2(2)/(5)div x=sqrt(25xx16)`

A

1

B

1.4

C

1.2

D

0.6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3\sqrt{512} + \frac{2 \cdot 2}{5} \div x = \sqrt{25 \times 16} \), we will follow these steps: ### Step 1: Calculate \( \sqrt{512} \) First, we need to simplify \( \sqrt{512} \). \[ \sqrt{512} = \sqrt{8 \times 64} = \sqrt{8} \times \sqrt{64} = 4\sqrt{8} \] Since \( 8 = 4 \times 2 \), we can further simplify: \[ \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} \] Thus, \[ \sqrt{512} = 4 \times 2\sqrt{2} = 8\sqrt{2} \] Now, we have: \[ 3\sqrt{512} = 3 \times 8\sqrt{2} = 24\sqrt{2} \] ### Step 2: Simplify \( \frac{2 \cdot 2}{5} \) Next, we simplify \( \frac{2 \cdot 2}{5} \): \[ \frac{2 \cdot 2}{5} = \frac{4}{5} \] ### Step 3: Substitute values into the equation Now we substitute these values back into the equation: \[ 24\sqrt{2} + \frac{4}{5} \div x = \sqrt{25 \times 16} \] ### Step 4: Calculate \( \sqrt{25 \times 16} \) Next, we calculate \( \sqrt{25 \times 16} \): \[ \sqrt{25 \times 16} = \sqrt{400} = 20 \] ### Step 5: Rewrite the equation Now we rewrite the equation: \[ 24\sqrt{2} + \frac{4}{5} \div x = 20 \] ### Step 6: Isolate \( \frac{4}{5} \div x \) To isolate \( \frac{4}{5} \div x \), we subtract \( 24\sqrt{2} \) from both sides: \[ \frac{4}{5} \div x = 20 - 24\sqrt{2} \] ### Step 7: Solve for \( x \) Now, we can express \( \frac{4}{5} \div x \) as \( \frac{4}{5x} \): \[ \frac{4}{5x} = 20 - 24\sqrt{2} \] Now, we can cross-multiply to solve for \( x \): \[ 4 = (20 - 24\sqrt{2}) \cdot 5x \] ### Step 8: Rearranging to find \( x \) Rearranging gives: \[ x = \frac{4}{5(20 - 24\sqrt{2})} \] ### Step 9: Simplify the expression for \( x \) Now we can simplify this expression further if needed or calculate the numerical value. ### Final Result Thus, the value of \( x \) is: \[ x = \frac{4}{5(20 - 24\sqrt{2})} \]

To solve the equation \( 3\sqrt{512} + \frac{2 \cdot 2}{5} \div x = \sqrt{25 \times 16} \), we will follow these steps: ### Step 1: Calculate \( \sqrt{512} \) First, we need to simplify \( \sqrt{512} \). \[ \sqrt{512} = \sqrt{8 \times 64} = \sqrt{8} \times \sqrt{64} = 4\sqrt{8} \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

3sqrt(512)div 4sqrt(16)div sqrt(576)=?

Length of the chord of contact of (2,5) with respect to y^(2)=8x is (3sqrt(41))/(2) (2sqrt(17))/(3) (7sqrt(3))/(5) (5sqrt(3))/(7)

If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^(2)-y^(2))^(2) is

ln the following questions in the place of question mark which sign would be prefered. [{32(512)^(1/3)}div(16)] ? sqrt256

((sqrt(x))^((3)/(5))times(sqrt(x))^((2)/(5))+2sqrt(x))/(2(sqrt(x))^((2)/(3))times(sqrt(x))^((1)/(3))+sqrt(x))=

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then (x+y) equals (a) 2(sqrt(5)+sqrt(3))( b) 2sqrt(15)(c)8 (d) 16