Home
Class 14
MATHS
sqrt(7569)+sqrt(?)=104...

`sqrt(7569)+sqrt(?)=104`

A

256

B

400

C

361

D

289

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{7569} + \sqrt{?} = 104 \), we can follow these steps: ### Step 1: Calculate \( \sqrt{7569} \) First, we need to find the square root of 7569. \[ \sqrt{7569} = 87 \] ### Step 2: Substitute \( \sqrt{7569} \) into the equation Now we can substitute this value back into the equation: \[ 87 + \sqrt{?} = 104 \] ### Step 3: Isolate \( \sqrt{?} \) Next, we will isolate \( \sqrt{?} \) by subtracting 87 from both sides of the equation: \[ \sqrt{?} = 104 - 87 \] \[ \sqrt{?} = 17 \] ### Step 4: Solve for \( ? \) Now we need to find the value of \( ? \) by squaring both sides: \[ ? = 17^2 \] \[ ? = 289 \] Thus, the value of \( ? \) is 289. ### Final Answer The required answer is \( ? = 289 \). ---

To solve the equation \( \sqrt{7569} + \sqrt{?} = 104 \), we can follow these steps: ### Step 1: Calculate \( \sqrt{7569} \) First, we need to find the square root of 7569. \[ \sqrt{7569} = 87 \] ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE INTEREST AND COMPOUND INTEREST

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|78 Videos
  • TIME , SPEED & DISTANCE (BOAT & STREAM)

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Question|91 Videos

Similar Questions

Explore conceptually related problems

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)

The smallest of sqrt(8)+sqrt(5),sqrt(7)+sqrt(6),sqrt(10)+sqrt(3) and sqrt(11)+sqrt(2) is

Find x : ( sqrt(x) + sqrt(a) ) / ( sqrt(x) - sqrt(a) ) + ( sqrt(x) - sqrt(a) ) / ( sqrt(x) + sqrt(a) ) = 6

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

sqrt(11)+sqrt(3),sqrt(20),sqrt(5)sqrt(15)+sqrt(22),sqrt(25),sqrt(10)3+sqrt(55),sqrt(15),sqrt(25)]|=

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2