Home
Class 9
MATHS
If (logx)/(y-z) = (logy)/(z-x) = (logz)/...

If `(logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y)`, then prove that
(i) `x^(x) . y^(y) . z^(z) = 1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y) show that x^(x)y^(y)z^(z)=1

If logx/(y-z)=logy/(z-x)=logz/(x-y) prove that xyz=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (logx)/(q-r)= (logy)/(r-p)=(logz)/(p-q) prove that x^(q+r).y^(r+p).z^(p+q)=x^p.y^q.z^r

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) ,then the value of x^(b+c).y^(c+a).z^(a+b) is

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c