Home
Class 12
CHEMISTRY
Consider the cell Pt|H(2(g,1atm))|H((a...

Consider the cell
`Pt|H_(2(g,1atm))|H_((aq.1M))^(+)||Fe_((aq))^(3+),Fe_((aq))^(2+)||Pt_((s))` Given that `E_(Fe^(3+)|Fe^(2+))^(o)=0.771V` the ratio of conc. Of `Fe_((aq))^(2+)` to `Fe_((aq))^(3+)` is, when the cell potential is 0.830V

A

0.101

B

0.924

C

0.12

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the ratio of the concentrations of \( \text{Fe}^{2+} \) to \( \text{Fe}^{3+} \) when the cell potential is 0.830 V. We will use the Nernst equation for this purpose. ### Step-by-Step Solution 1. **Identify the Standard Cell Potential**: The standard reduction potential for the half-reaction \( \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \) is given as \( E^\circ_{\text{Fe}^{3+}/\text{Fe}^{2+}} = 0.771 \, \text{V} \). 2. **Write the Nernst Equation**: The Nernst equation can be expressed as: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{n} \log \frac{[\text{Products}]}{[\text{Reactants}]} \] For our reaction, we have: \[ E_{\text{cell}} = E^\circ_{\text{Fe}^{3+}/\text{Fe}^{2+}} - \frac{0.059}{1} \log \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} \] 3. **Substitute Known Values**: We know: - \( E_{\text{cell}} = 0.830 \, \text{V} \) - \( E^\circ_{\text{Fe}^{3+}/\text{Fe}^{2+}} = 0.771 \, \text{V} \) Substituting these values into the Nernst equation gives: \[ 0.830 = 0.771 - 0.059 \log \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} \] 4. **Rearrange the Equation**: Rearranging the equation to isolate the logarithmic term: \[ 0.059 \log \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} = 0.771 - 0.830 \] \[ 0.059 \log \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} = -0.059 \] 5. **Divide by 0.059**: Dividing both sides by 0.059: \[ \log \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} = -1 \] 6. **Convert Logarithmic Form to Ratio**: Converting from logarithmic form to exponential form: \[ \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} = 10^{-1} = 0.1 \] ### Final Result The ratio of the concentration of \( \text{Fe}^{2+} \) to \( \text{Fe}^{3+} \) is: \[ \frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} = 0.1 \]

To solve the problem, we need to determine the ratio of the concentrations of \( \text{Fe}^{2+} \) to \( \text{Fe}^{3+} \) when the cell potential is 0.830 V. We will use the Nernst equation for this purpose. ### Step-by-Step Solution 1. **Identify the Standard Cell Potential**: The standard reduction potential for the half-reaction \( \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \) is given as \( E^\circ_{\text{Fe}^{3+}/\text{Fe}^{2+}} = 0.771 \, \text{V} \). 2. **Write the Nernst Equation**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If e_(Fe^(2+) //Fe)^@ =- 0. 44 1V . And E_(Fe^(3+)//Fe^(2+))^(o) = 0. 771 V . The standard emf of the reaction Fe +2 Fe^(3+) rarr 3Fe^(2+) will be .

Consider the cell at 25^(@) C Zn | Zn^(2+) (aq), , (1 M) || Fe^(3+) (aq) , Fe^(2+) (aq) | Pt(s) The fraction of total iron present as Fe^(3+) ion at the cell potential of 1 . 5000 V is x xx 10 ^(-2) . The value of x is ________ (Nearest integer) (Given : E_(Fe^(3+)//Fe^(2+))^(0) = 0 . 77 V, E_(Zn^(2+)//Zn)^(0) = - 0 . 76 V

Fe^(2+)(aq.)+Cr_(2)O_(7)^(2-)+H^(+) to Fe^(3+)(aq.)+Cr^(3+)

The concentration of Fe^(2+) ion in aqueous solution can be determined by redox titration with bromate ion according to reaction: 6Fe_((aq))^(2+)+BrO_(3(aq))^(-)+6H_((aq))^(+)rarr6Fe_((aq))^(3+)+Br_((aq))^(-)+3H_(2)O_((l)) What is the molar concentration of Fe^(2+) if 31.50mL of 0.105 M KBrO_(3) is required for complete neutralisation of 10.0mL of Fe^(2+) solution?