Home
Class 12
MATHS
If a, b and c are unit vectors satisfyin...

If a, b and c are unit vectors satisfying `|a-b|^(2)+|b-c|^(2)+|c-a|^(2)=9`, then `|2a+5b+5x|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If a,b and c are unit vectors, then the maximum value of |a-b|^(2)+|b-c|^(2)+|c-a|^(2) is?

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.