Home
Class 12
MATHS
If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b...

If `|{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0` and the vectors
`overset(to)(A) =(1, a, a^(2)) , overset(to)(B) = (1, b, b^(2)) , overset(to)(C )(1,c,c^(2))`
are non-coplanar then the product abc = ….

Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0 and the vectors overset(to)((A)) =(1, a, a^(2)) , overset(to)((B)) = (1, b, b^(2)) , overset(to)((C))=(1,c,c^(2)) are non-coplanar then the value of abc = ….

If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0 and the vectors vecA =(1, a, a^(2)) , vec(B) = (1, b, b^(2)) , vec(C )(1,c,c^(2)) are non-coplanar then the product abc = ….

IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that abc=1

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

If |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and vectors (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2)) are non-coplanar, then the value of abc +1 is

Given |(a,a^(2),a^(3)+1),(b,b^(2).b^(3)+1),(c,c^(2)+c^(3)+1)|=0 and a ne b ne c .Show that abc=-1