Home
Class 12
MATHS
int (-1)^1 f(x) dx where f(x) = min (x +...

`int _(-1)^1 f(x) dx where f(x) = min (x + 1, sqrt(1-x)) `

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of int_(-10)^(10) f(x) dx , where f(x) = min {x -[x] , -x-[-x]} , is

int_(0) ^(1) x f ''(x) dx, where f (x) = cos (tan ^(-1)x)

The area of int_(-10)^(10)f(x)dx, where f(x)=min{x-[x],-x-[-x]}, where [1 is G.L.E., is

int_(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1| is equal to

int_(0)^(3)f(x)dx, where f(x)=|x|+|x-1|+|x-2|

Evaluate: int f'(x)dx ,where f(x)=e^(sqrt(x^2+1))

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

Evaluate int_1^4 f(x)dx, where f(x)= |x-1|+|x-2|+|x-3|.