Home
Class 11
MATHS
If x=r cos alpha cos beta,y=r cos alpha ...

If `x=r cos alpha cos beta,y=r cos alpha sin beta,z=r sin alpha` then `x^(2)+y^(2)+z^(2)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of the point (r sec alpha cos beta,r sec alpha sin beta,r tan alpha) is (a). x^(2)-y^(2)-z^(2)=r^(2) (b). x^(2)-y^(2)+z^(2)=r^(2) (c). x^(2)+y^(2)+z^(2)=r^(2) (d) . x^(2)+y^(2)-z^(2)=r^(2)

If x=r sin alpha cos beta, y= r sin alpha sin beta and z= r cos alpha , prove that x^(2)+y^(2) + z^(2) = r^(2).

The locus of the point (r cos alpha cos beta, r cos alpha sin beta, r sin alpha) is

If x= sin alpha + sin betga , y = cos alpha + cos beta tan alpha + tan beta =

If x=r cos alpha cos beta cos gamma , y= cos alpha cos beta sin gamma , z= r sin alpha cos beta , mu = r sin beta " then " x^(2)+y^(2) + z^(2)+mu^(2)=

If x = r cos alpha cos beta cos gammay == r cos alpha cos beta sin gamma, z = r sin alpha cos betamu = r sin beta then x ^ (2) + y ^ (2) + z ^ (2) + mu ^ (2) =

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If x = cos alpha + cos beta - cos(alpha +beta) and y = 4 sin '(alpha)/(2) sin'(beta)/(2) cos((alpha+ beta)/(2)) , then (x-y) equals