Home
Class 12
MATHS
If a function is defined as f(x)=sqrt(lo...

If a function is defined as `f(x)=sqrt(log_(h(x))g(x))`, where `g(x)=|sinx|+sinx,h(x)=sinx+cosx,0lexlepi`. Then find th domain of `f(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt(log((1)/(|sinx|))) is :

Find the range of f(x)=abs(sinx)+abs(cosx)0lexlepi

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

The domain of the function f(x)=sqrt(log(1/(|sinx|)))

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

The domain of the function : f(x)=sqrt(log""(1)/(|sinx|)) is :

The domain of the function f(x)=sqrt(log_(10)((1)/(|sinx|))) is

If f(x) =sqrt(4-x^(2)) +1/(sqrt(abs(sinx)-sinx)) , then the-domain of f(x) is