Home
Class 12
MATHS
lim(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/...

`lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)=` (A) `sqrt(2/pi)` (B) `sqrt(pi/2)` (C) `1/pi` (D) `sqrt(1/pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^2-1))=

lim_(x rarr(-1)^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(x+1)) is equal to

lim_(x rarr1^(-))(sqrt(pi)-sqrt(2sin^(-1)x))/(sqrt(1-x))=(A)sqrt((2)/(pi))(B)sqrt((pi)/(2))(C)(1)/(pi)(D)sqrt((1)/(pi))

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

lim_(x rarr(pi)/(2))(sqrt(2)-sqrt(1+sin x))/(cos^(2)x)

The value of lim_(xrarr1)(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to