Home
Class 12
MATHS
यदि y=(logx)^(2), तब x=e पर dy/dx बराबर ...

यदि `y=(logx)^(2)`, तब `x=e` पर dy/dx बराबर है :

Promotional Banner

Similar Questions

Explore conceptually related problems

If y =(logx)^(x) then (dy)/(dx) =

y= (logx)^(x)-x^(logx) find dy/dx

If y=(logx)/(x) , then find (dy)/(dx)

If y=e^(x^2+logx) , then dy/dx=?

If y = (e^x logx)/x^2 then (dy)/(dx)

If y = (e^x logx)/x^2 then (dy)/(dx)

If y=e^(1+logx)," then: "(dy)/(dx)

If y=(logx)^(2) , then (dy)/(dx) at x=e is equal to a)2 b) e/2 c)e d) 2/e

If , y=(logx )^(sin x ) ,then (dy)/(dx) =

If y=x^((logx)^log(logx)) then (dy)/(dx)=