Home
Class 12
MATHS
If f (1) =1 f'(1)=2 then the value of li...

If `f (1) =1 f'(1)=2` then the value of `lim _(xto1) (sqrt(f(x))-1)/(sqrtx-1)` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=1 , f'(1)=2 , then find the value of lim_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1) (A) 2 (B) 4 (C) 1 (D) (1)/(2)

If f(1)=1,f'(1)=2, then write the value of (lim)_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)

If f(1)=1,f^(prime)(1)=2, then write the value of lim_(x->1)(sqrt(f(x))-1)/(sqrt(x)-1)

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

lim_(xto1)(sqrtx-x^(2))/(1-sqrtx)

lim_(xto1)(sqrtx-1)/(x-1) is

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =

If f(1)=1,f'(1)=2 , then lim_(xto1)(sqrt(f(x))-1)/(sqrt(x)-1) is a)2 b)4 c)1 d) 1/2

The value of lim_(xto1^(-)) (1-sqrt(x))/((cos^(-1)x)^(2)) is