Home
Class 11
MATHS
...sin^8x<=sin^6x<=sin^4x<=sin^2x<=1 als...

`...sin^8x<=sin^6x<=sin^4x<=sin^2x<=1` also `....cos^8x<=cos^6x<=cos^4x<=cos^2x<=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of sin^(8)x + cos^(8)x = 17/32

int (cos^(8)x-sin^(8)x)/(1-2 cos^(2)sin^(2)x)dx=

Number of roots of the equation (3+cos x)^(2)=4-2sin^(8)x,x in[0,5 pi] are

Maximum value of sin ^(8) x+cos ^(16) x is

If cos x + cos^(2) x =1 , " then " sin^(12) x + 3 sin^(10)x + 3sin^(8) x + sin^(6) x =

Prove that cos^(2)2x-cos^(2)6x=sin4x.sin8x ?

int_(0)^( pi/2)sin^(8)x cos^(2)xdx=

Let I=int_(0)^(2pi)(xsin^(8)x)/(sin^(8)x+cos^(8)x)dx , then I is equal to :

Solve the following equations: (i) sin^(8)x - cos^(8)x=1 (ii) sin^(10)x - cot^(8)x=1