Home
Class 12
MATHS
if Im((z+2i)/(z+2))= 0 then z lies on t...

if `Im((z+2i)/(z+2))= 0` then z lies on the curve :

Promotional Banner

Similar Questions

Explore conceptually related problems

If "Re"((z-8i)/(z+6))=0 , then z lies on the curve

If "Re"((z-8i)/(z+6))=0 , then lies on the curve

If Im((z-i)/(2i))=0 then the locus of z is

If |z-iRe(z)|=|z-Im(z)|, then prove that z, lies on the bisectors of the quadrants.

If z be any complex number (z!=0) then arg((z-i)/(z+i))=(pi)/(2) represents the curve

If z be any complex number (z!=0) then arg((z-i)/(z+i))=pi/2 represents the curve

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).