Home
Class 10
MATHS
If alpha, beta are the zeroes of x^(2) ...

If `alpha, beta ` are the zeroes of `x^(2) + x + 1`, then `1/(alpha) + 1/(beta)`= ……….

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeroes of x^2 - 8x + 1 , then the value of 1/alpha +1/beta - alpha beta is :

If alpha,beta are the zeroes of x^(2)+x-2 then evaluate ((1)/(alpha)-(1)/(beta))^(2)

If alpha, beta are the zeros of the polynomial x^(2) + 6x+2" then " (1/alpha+1/beta)=?

If alpha,beta are zeros of 7x^(2)+20x-5 then value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the zeroes of the polynomial x^(2)+x+1, then (1)/(alpha)+(1)/(beta) =

If alpha, beta are the zeroes of the polynomial f(x) = x^2+x+1 , then 1/alpha+1/beta =

If alpha and beta are zeros of p(x) = 4x^(2) + 3x + 7 , "find" (1)/(alpha) + (1)/(beta) .

If alpha and beta are zeros of x^(2)-x-1 , find the value of (1)/(alpha)+(1)/(beta)

If alpha,beta are the zeroes of the polynomial x^(2)-p(x+1)-q , then (alpha+1)(beta+1)=

If a and beta are the zeroes of the polynomial x^(2) + 2x + 1 , then (1)/(alpha)+(1)/(beta) is equal to :