Home
Class 12
MATHS
यदि x= a cos 2t, y = b sin^(2)t तो दिखा...

यदि `x= a cos 2t, y = b sin^(2)t` तो दिखाइए `(d^(2)y)/(dx^(2))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos(2t) and y=sin^(2)t then what is (d^(2)y)/(dx^(2))

If =a sin t-b cos t,y=a cos t+b sin t, prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))

If x=a sin t-b cos t,quad y=a cos t+b sin t prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))

If x= asin t- b cos t ,y=a cost +bsin t,then y^(3) (d^(2) y)/(dx^(2) )=

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)