Home
Class 12
MATHS
Show that Delta =Delta(1), where Delta...

Show that `Delta =Delta_(1)`, where
`Delta = |[Ax,x^(2), 1],[By, y^(2), 1],[Cz, z^(2),1]| "and "Delta_(1) = |[A,B, C],[x, y, z],[zy, zx,xy]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Delta=|(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1)| and Delta_(1)=|(A,B,C),(x,y,z),(zy,zx,xy)| then

If Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then

Let Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then :

Show that Delta =Delta_1 where Delta=|{:(Ax,x^2,1),(By,y^2,1),(Cz,z^2,1):}|,Delta_1=|{:(A,B,C),(x,y,z),(zy,zx,xy):}|

If Delta=|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}| and Delta_(1)=|{:(1,1,1),(yz,zx,xy),(x,y,z):}| then prove that Delta+Delta_(1)=0

If "Delta"=|(1,x,x^2),( 1,y, y^2),( 1,z, z^2)| , "Delta"_1=|(1, 1, 1),(yz, z x,x y), (x, y, z)| , then prove that "Delta"+"Delta"_1=0 .

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

IF Delta=|{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| and Delta_1=|{:(1,1,1),(yz,zx,xy),(x,y,z):}| then prove that Delta +Delta_1=0