Home
Class 12
MATHS
If underset(x rarr 3)lim (x^(n) - 3^(n))...

If `underset(x rarr 3)lim (x^(n) - 3^(n))/(x-3) = 27n`, then the value of n is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr3)(x^n3^n)/(x-3)=27n ,then the value of n is

If lim_(xrarr3)(x^n-3^n)/(x-3)=108 ,then the value of n is

If lim_(x rarr 2) [(x^(n)-2^(n))/(x-2)]=32 , then find the value of n.

If lim_(x rarr-n)(x^(7)+n^(7))/(x+n)=7, then the value of n is

lim_(x rarr3)(x^(n)-3^(n))/(x-3)=405 find n>0

If lim_(x rarr3)(x^(n)-3^(n))/(x-3)=108,n in N then value of n is (i)5(ii)4(iii)6(iv)6

Show : underset(xrarr2)"lim"((1+x)^(n)-3^(n))/(x-2)=n.3^(n-1)

If underset(xrarr0)"lim" (tanx-sinx)/(x^(3))=(M)/(N) , then value of N (when M =3 ) is equal to -

underset(xrarr1)"lim"(x+x^(2)+x^(3)+.....+x^(n)-n)/(x-1) =