Home
Class 12
MATHS
If y = cosec theta + cot theta , prove...

If `y = cosec theta + cot theta ` , prove that `2(dy)/(d theta)+ y^(2)+ 1 = 0 ` .

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=cos ec@+cot theta, prove that 2(dy)/(d theta)+y^(2)+1=0

If x =a cot theta , y=b cosec theta ,then (dy)/(dx)=

If x=a("cosec" theta + cot theta ) , y=b( " cosec " theta - cot theta ) , then

(1+cosec theta - cot theta)/(1+cosec theta + cot theta)=

If (cosec theta - cot theta)=2 , the (cosec theta +cot theta) is equal to

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Find dy/dx , if x= cosec^2 theta , y= cot^3 theta , at theta = (pi)/6

Eliminate theta, if x = 3 cosec theta + 4 cot theta, y = 4 cosec theta - 3 cot theta .

If x=sec theta - tan theta, y = cosec theta + cot theta then prove that xy+x-y+1=0 .